
A simple Arduino based sensor
monitoring platform for
Hydroponics
Last time I posted about automation I talked about how I use
an Arduino to automate the monitoring and management of my
home hydroponic system. Today I want to talk about how you can
build an Arduino based station to monitor the most important
variables of your hydroponic crop without having to solder
anything, use complicated bread board setups or learn to how
to do any coding. I will walk you through some of the steps to
build the system, talk about the parts you need and show you
the code you need to run to have this setup work.

–

–

A basic sensor monitoring application for hydroponics should

https://scienceinhydroponics.com/2017/05/a-simple-arduino-based-sensor-monitoring-platform-for-hydroponics.html
https://scienceinhydroponics.com/2017/05/a-simple-arduino-based-sensor-monitoring-platform-for-hydroponics.html
https://scienceinhydroponics.com/2017/05/a-simple-arduino-based-sensor-monitoring-platform-for-hydroponics.html
http://scienceinhydroponics.com/2017/03/automating-a-hydroponic-system-sensors-and-monitoring.html
http://scienceinhydroponics.com/wp-content/uploads/2017/05/Screenshot_2017-05-03_07-08-08.png

be able to get the most critical information needed to grow a
crop successfully. The basic variables you would want to
monitor to achieve this goal would be: temperature, humidity,
carbon dioxide concentration, pH and electrical conductivity.
An Arduino micro-controller can help you achieve all these
goals at a reduced cost when compared with commercially
available monitoring solutions of the same quality.

–

Arduino UNO R3 – 23.90 USD
LCD 12864 screen shield – 24.05 USD
DHT22 temperature and humidity sensor – 9.50 USD
Gravity pH sensor – 56.95 USD
Gravity EC sensor – 69.90 USD
Gravity CO2 sensor – 58.00 USD

–

The list above contains all the pieces you need to get this to
work. This includes the Arduino plus an LCD display that we
will use to be able to read the information we obtain from the
sensors. I have included links to the pieces at the dfrobot
site (one of my favorite sources for DIY electronics) but you
can definitely get them elsewhere if you prefer. The pH sensor
included here is of industrial quality while the EC sensor has
a lower quality level. However I have been able to use both
for extended periods of time without anything else than a
calibration around once every 2 months. If you want you can
also purchase an industrial quality EC probe if you find the
prove from the included Gravity kit to be insufficient for
your needs.

The cool thing about this setup is that the LCD screen already
contains all the connections we need for the sensors. The
bottom part contains numbered analog inputs while the left
part contains numbered digital inputs. In this setup we have
two digital sensors – the DHT22 humidity/temperature sensor

https://www.dfrobot.com/product-610.html
https://www.dfrobot.com/product-1084.html
https://www.dfrobot.com/product-1102.html
https://www.dfrobot.com/product-1110.html
https://www.dfrobot.com/product-1123.html
https://www.dfrobot.com/product-1549.html

and the solution temperature sensor that comes with the EC
sensor – and three analog sensors, which are pH, EC and CO2. I
have put some text on the image to show you exactly where you
should connect the sensors according to the code, make sure
the orders of the colors on the wires match the colors on the
connector in the LCD screen. The Arduino code contains some
defines with the pins for each sensor so you can just change
those numbers if you want to connect the sensors in different
places.

–

//Libraries
#include <DHT.h>;
#include <U8glib.h>
#include <stdio.h>
#include <OneWire.h>
#include <Wire.h>
#include <Arduino.h>
#include <Adafruit_Sensor.h>

//PINS
#define DHT_PIN 5 // DHT pin
#define DHTTYPE DHT22 // DHT 22 (AM2302)
#define PH_PIN 2 //pH meter pin
#define CO2_PIN 3 //ORP meter pin
#define EC_PIN 1 //EC meter pin
#define DS18B20_PIN 6 //EC solution temperature
pin

// AVERAGING VALUES
#define MEDIAN_SAMPLE 8
#define MEASUREMENTS_TAKEN 100

// EC - solution temperature variables
#define StartConvert 0
#define ReadTemperature 1

// EC values // CHANGE THESE PARAMETERS FOR EC PROBE
CALIBRATION

#define EC_PARAM_A 0.00754256

//pH values // CHANGE THESE PARAMETERS FOR PH PROBE
CALIBRATION
#define PH_PARAM_A 1.0
#define PH_PARAM_B 0.0

#define XCOL_SET 55
#define XCOL_SET2 65
#define XCOL_SET_UNITS 85

//--------------------------

DHT dht(DHT_PIN, DHTTYPE);
U8GLIB_NHD_C12864 u8g(13, 11, 10, 9, 8);
unsigned long int avgValue;
float b, phValue;
int buf[MEASUREMENTS_TAKEN],tmp;
int chk;
float hum;
float temp;
unsigned int AnalogAverage = 0,averageVoltage=0;
float solution_temp,ECcurrent;
unsigned int levelAverage;
float co2;
OneWire ds(DS18B20_PIN);

//--------------------------

void draw() {
 u8g.setFont(u8g_font_04b_03);
 u8g.drawStr(0,11,"Temp:");
 u8g.setPrintPos(XCOL_SET,11);
 u8g.print(temp);
 u8g.drawStr(XCOL_SET_UNITS, 11,"C");
 u8g.drawStr(0,21,"Humidity:");
 u8g.setPrintPos(XCOL_SET,21);
 u8g.print(hum);
 u8g.drawStr(XCOL_SET_UNITS,21,"%");
 u8g.drawStr(0,31,"pH:");
 u8g.setPrintPos(XCOL_SET,31);

 u8g.print(phValue);
 u8g.drawStr(0,41,"EC:");
 u8g.setPrintPos(XCOL_SET,41);
 u8g.print(ECcurrent);
 u8g.drawStr(XCOL_SET_UNITS,41,"mS/cm");
 u8g.drawStr(0,51,"Sol.Temp:");
 u8g.setPrintPos(XCOL_SET,51);
 u8g.print(solution_temp);
 u8g.drawStr(XCOL_SET_UNITS,51,"C");
 u8g.drawStr(0,61,"CO2:");
 u8g.setPrintPos(XCOL_SET,61);
 u8g.print(co2);
 u8g.drawStr(XCOL_SET_UNITS,61,"ppm");
}

float TempProcess(bool ch)
{
 static byte data[12];
 static byte addr[8];
 static float TemperatureSum;
 if(!ch){
 if (!ds.search(addr)) {
 ds.reset_search();
 return 0;
 }
 if (OneWire::crc8(addr, 7) != addr[7]) {
 return 0;
 }
 if (addr[0] != 0x10 && addr[0] != 0x28) {
 return 0;
 }
 ds.reset();
 ds.select(addr);
 ds.write(0x44,1);
 }
 else{
 byte present = ds.reset();
 ds.select(addr);
 ds.write(0xBE);
 for (int i = 0; i < 9; i++) {
 data[i] = ds.read();

 }
 ds.reset_search();
 byte MSB = data[1];
 byte LSB = data[0];
 float tempRead = ((MSB << 8) | LSB);
 TemperatureSum = tempRead / 16;
 }
 return TemperatureSum;
}

void calculateAnalogAverage(int pin){
 AnalogAverage = 0;
 for(int i=0;i<MEASUREMENTS_TAKEN;i++)
 {
 buf[i]=analogRead(pin);
 delay(10);
 }
 for(int i=0;i<MEASUREMENTS_TAKEN-1;i++)
 {
 for(int j=i+1;j<MEASUREMENTS_TAKEN;j++)
 {
 if(buf[i]>buf[j])
 {
 tmp=buf[i];
 buf[i]=buf[j];
 buf[j]=tmp;
 }
 }
 }
 avgValue=0;

 for(int i=(MEASUREMENTS_TAKEN/2)-
(MEDIAN_SAMPLE/2);i<(MEASUREMENTS_TAKEN/2)+(MEDIAN_SAMPLE/2);i
++){
 avgValue+=buf[i];
 }
 AnalogAverage = avgValue/MEDIAN_SAMPLE ;
}

void read_pH(){
 calculateAnalogAverage(PH_PIN);
 phValue=(float)AnalogAverage*5.0/1024;

 phValue=PH_PARAM_A*phValue+PH_PARAM_B;
}

void read_EC(){
 calculateAnalogAverage(EC_PIN);
 solution_temp = TempProcess(ReadTemperature);
 TempProcess(StartConvert);
 averageVoltage=AnalogAverage*(float)5000/1024;
 float TempCoefficient=1.0+0.0185*(solution_temp-25.0);

 float
CoefficientVolatge=(float)averageVoltage*TempCoefficient;
 ECcurrent=EC_PARAM_A*CoefficientVolatge;
}

void read_CO2(){
 float voltage;
 float voltage_difference;
 calculateAnalogAverage(CO2_PIN);
 voltage = AnalogAverage*(5000/1024.0);
 if(voltage == 0)
 {
 co2=-100.0;
 }
 else if(voltage < 400)
 {
 co2=0.0;
 }
 else
 {
 voltage_difference=voltage-400;
 co2=voltage_difference*50.0/16.0;
 }
}

void setup()
{
 pinMode(13,OUTPUT);
 Serial.begin(9600);
 dht.begin();
 u8g.setContrast(0);
 u8g.setRot180();

 TempProcess(StartConvert);
}

void loop()
{

 digitalWrite(13, HIGH);
 delay(800);
 digitalWrite(13, LOW);
 hum = dht.readHumidity();
 temp= dht.readTemperature();
 read_pH();
 read_EC();
 read_CO2();

 u8g.firstPage();
 do {
 draw();
 }
 while(u8g.nextPage());
}

–

After you connect the sensors you can then upload the code
above using the Arduino IDE to your Arduino via USB. You will
need to install the following Arduino libraries to get it to
compile and upload:

–

AdaFruit unified sensor driver
AdaFruit DHT sensor library
OneWire library
U8glib library

–

After you upload this to your Arduino it should start and show
you a screen with the temperature, humidity, pH, EC and carbon
dioxide readings. The carbon dioxide concentration might show

https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/DHT-sensor-library
https://github.com/PaulStoffregen/OneWire
https://github.com/olikraus/u8glib

as -100 in the beginning, which simply means that the sensor
is heating up (it requires a few minutes before it can start
giving readings).

It is also worth noting that you should calibrate your pH
sensor. To do this you should read the pH of a 7.0 buffer (M7)
– record the value you get – and then repeat the process with
a pH 4.0 buffer (M4). You can then change the PH_PARAM_A and
PH_PARAM_B values in the code (right at the beginning) to make
the sensor match your measurements. The PH_PARAM_A parameter
should be equal to 3/(M7-M4) while PH_PARAM_B should be 7-
M7*PH_PARAM_A. If you ever need to recalibrate set PH_PARAM_A
to 1 and PH_PARAM_B to 0 and repeat the process. For the EC
sensor you should perform a calibration using the 1.412 mS/cm
solution that comes with the sensor and then change EC_PARAM_A
so that your sensor matches this reading
(1.412/(MEC/0.00754256)).

With this new monitoring station you should now have a
powerful tool to monitor your hydroponic system and make sure
everything is where you want it. Of course making the arduino
intereact with a computer to record these values and then
implementing control mechanisms using fans, peristaltic pumps,
water pumps, humidifiers/dehumidifiers and other appliances is
the next step in complexity.

