
How  to  prepare  pH  4  and  7
buffers from scratch without
using a pH meter
I wrote a post in the past about how you could prepare pH
buffers in order to calibrate your pH meter if you happen to
already have a calibrated pH probe. This can generate decent
results if the initial calibration of the probe is excellent
and the sensitivity of the probe is high. This however might
not be a possibility for some people – given that their pH
probe might not be calibrated to start with – so in today’s
post I am going to tell you how you can prepare your own pH 4
and 7 buffers without having any other tools but a scale,
distilled water and some raw salts. This tutorial will be made
assuming you’re preparing 500mL of each buffer but feel free
to scale this up or down as you wish (these buffers are meant
to give you a total 0.1M buffer concentration). Note that pH
depends on temperature, these buffers are meant to give pH
values of 4 and 7 at 25C.

To  prepare  these  buffers  you  will  need  the  following
materials:

A scale that can weight with a precision of +/- 0.001g
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Potassium citrate (food grade)
Anhydrous Citric acid (food grade)
Potassium monobasic phosphate (food grade)
Potassium dibasic phosphate (food grade)
Distilled water
Two  clean  glass  bottles  to  prepare  and  store  the
buffers. (I would recommend these, but any clean glass
containers would do)

Follow these steps to prepare the pH 4 buffer:

Weight exactly 5.259g of potassium citrate and transfer1.
that amount to the glass bottle
Weight exactly 6.309g of citric acid and transfer the2.
solid to the same glass bottle
Fill the bottle to around 250mL using distilled water3.
Mix the solids using a glass rod or any other inert4.
mixing utensil until fully dissolved
Fill the bottle to 500mL using distilled water.5.
Label the flask clearly so that you know this is the pH6.
4 buffer

Follow these steps to prepare the pH 7 buffer:

Weight exactly 3.369g of potassium dibasic phosphate and1.
transfer that amount to the second glass bottle
Weight exactly 4.172g of potassium monobasic phosphate2.
and transfer the solid to the same glass bottle
Fill the bottle to around 250mL using distilled water3.
Mix the solids using a glass rod or any other inert4.
mixing utensil until fully dissolved
Fill the bottle to 500mL using distilled water.5.
Label the flask clearly so that you know this is the pH6.
7 buffer

The above should provide you with pH 4 and 7 buffer solutions
that should be relatively precise. The exact volume of the
solution is not critical, as the volume only has a strong
effect on the buffering capacity but not on the final pH,

https://amzn.to/3dtM6lq
https://amzn.to/3drN41K
https://amzn.to/3sMzfBm
https://amzn.to/31Ep59W
https://amzn.to/2ObLCI4


especially at relatively high buffering strengths. However, if
you want to have more precision use 500mL volumetric flasks to
prepare the solutions. The error in these buffers will depend
on the purity of the salts used – which is why higher purity
food grade salts are recommended above – as well as in the
accuracy of the weighting and transferring processes. In order
to obtain a higher accuracy you would need to purchase more
expensive  analytical  grade  salts  and  also  use  volumetric
flasks to prepare the solutions, so that you can prepare them
at the exact concentration intended.

Another limitation of the above buffers is that they do not
contain any sort of preservative and they are both prepared
with  food  grade  substances  that  can  attract  fungi  and
bacteria. For this reason the above buffers will probably not
last for a significant amount of time and should probably be
discarded within a couple of weeks. However the chemicals used
here are very cheap so – with the amounts purchased above –
you should be able to prepare as much buffering solution as
you might need. Note that the solutions can also be frozen in
order to increase their shelf life, although keep in mind that
since pH depends on temperature you will need to wait for them
to reach room temperature before taking a reading.

It is also worth mentioning that these buffers will both be
completely transparent, since they are prepared without any
dies in order to give the maximum possible accuracy in the pH.
However you can add a very small amount of food coloring to
each  one  to  provide  a  distinct  color  without  causing  a
significant change in the pH, less than half a drop should be
enough to give your solutions a distinct hue.

I would advice you do a pH check with a pH meter calibrated
using a normal commercial solution the first time you prepare
these solutions. This is just to be sure that you followed the
procedure  correctly  and  the  resulting  buffer  is  of  the
intended quality. Once you do this you should be able to
create as much buffer as you desire without any problems.



Leave a comment with your experience!

Why TDS is NOT equal to Total
Dissolved  Solids  in
hydroponics
Electrical conductivity is a very commonly used measurement in
hydroponics, yet a very poorly understood one. I have written
several posts about conductivity in the past (1,2,3) and today
I want to talk about the use of the term “Total Dissolved
Solids” and the poor usage of the unit “ppm” in order to
express  a  measurement  of  electrical  conductivity.  In  this
article I will walk you through why this term exists in the
first  place  and  why  its  use  in  hydroponics  is  terribly
misleading for growers.

Conductivity as a function of NaCl concentration (taken from
here)

Conductivity is just a measure of how easy it is for an
electrical charge to go from one electrode of a certain area
to another. It’s generally expressed in mS/cm, which is a
measurement of conductance (the opposite of resistance) and
area (the area of the electrode). How in the world do we get
from this to a measurement like “ppm”, which measures the
concentration of something in mg/L? What does a measurement of
500  ppm  even  mean?  What  is  it  that  we  are  expressing  a
concentration of?

The answer lies in the practical uses of conductivity and a
simplification to make the evaluation of water sources easier.
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Conductivity is generally linearly proportional to the amount
of a pure salt dissolved in solution at low concentrations.
For  a  pure  salt  like  table  salt  (NaCl)  the  higher  the
concentration  of  the  salt  in  solution  the  higher  the
conductivity (you can see this in the image above). People
working on water quality realized that they generally dealt
with  similar  salt  combinations  (Mg  and  Ca  carbonates  and
possibly some Na and K chlorides) so they decided to use some
standard  salt  mixtures  (say  KCl,  NaCl  or  some  mixture  of
Ca/Mg/K/Na salts) and then use conductivity as a proxy for the
concentration of these things that are actually in solution.
So the “ppm” that your EC meter reads is just the equivalent
conductivity of some standard. A meter reading 500 ppm in
conductivity  is  telling  you  “your  solution  has  the  same
conductivity as a solution of the standard at 500 ppm”. The
“standard” can change – as mentioned before – which is why
there are several different TDS scales. One meter might be
telling you it’s the same conductivity as a solution of KCl
with that concentration, while another might be in NaCl.

Conductivity curves of different salts used in hydroponics
(taken from this article)

The above is very useful when you’re measuring things that
tend to be similar but this becomes a complete nightmare when
the  composition  of  what  you’re  measuring  can  change

https://link.springer.com/article/10.1007/s00271-018-0569-9?shared-article-renderer


substantially.  In  hydroponics  you  have  a  wide  variety  of
different salts, all with very different conductivity values
at different concentrations. Look at the graph above, which
shows the conductivity as a function of concentration for 8
different salts commonly used in hydroponic culture. If you
prepare  three  solutions,  one  with  1000  ppm  solution  of
potassium  sulfate,  another  with  1000  ppm  of  monopotassium
phosphate and another with 1000 ppm of ammonium nitrate and
measure them with your conductivity meter they would all give
very different results. The meter might be close to 0.95mS/cm
for the monopotassium phosphate, but it might read almost 1.5
mS/cm for the potassium sulfate. Both solutions have 1000 ppm
of “total dissolved solids” but the conductivity meter is
telling you one has 500 ppm and the other almost 800 ppm, none
of them even close. This is because “total dissolved solids”,
as  used  in  water  quality  measurements,  is  a  meaningless
measurement in hydroponics as it relates to the actual ppm
values of things dissolved.

This is the main reason why you should never compare the EC
values of nutrients that contain different ratios of salts,
because they are simply not the same. One nutrient might give
you 100 ppm of potassium at some EC level, while another might
give you 200 ppm. Thinking that having the same EC level means
that both are at the same “strength” is a big mistake, since
this is never going to be the case when two nutrient solutions
are mixed with different ratios of nutrients. This is also why
comparing vegetative and bloom formulation EC values is not
correct.  A  solution  in  veg  might  contain  a  lot  more  of
nitrates  while  a  solution  in  bloom  might  contain  more
phosphates. As we saw above this might mean that a solution of
the “same strength” might actually have a significantly lower
measured EC value.

Since the TDS measurement is not telling you anything about
“total  dissolved  solids”  in  hydroponics,  you  should  avoid
using it to avoid confusion. This is important since nutrient



concentrations are usually expressed in ppm as well, ppm of
actual  nutrients  dissolved  in  solutions.  Instead  use  the
normal conductivity measurements of your meter in conductance
per area. You should also take care to only use EC values to
talk about comparative strength when you’re talking about a
formulation where the ratios of nutrients remain the same. If
that’s not the case, then you should not talk in comparative
terms between the two solutions as this might deviate a lot
from reality.

My advice is to not think in EC terms to begin with, but to
think about nutrient concentrations, prepare solutions that
match the concentrations you want and then use the EC of those
solutions as references to know whether they are prepared
correctly or not. The conductivity should be a measurement
used for confirmation but not as a guiding principle. For
example the aim should be to “prepare a solution containing
150 ppm of N and an K:N ratio of 1.2” not to “prepare a
solution with an EC of 1.2 mS/cm”.

Understanding  the  carbonic
acid/bicarbonate  buffer  in
hydroponics
I  have  written  several  articles  before  about  pH  and  it’s
importance in hydroponic culture (1, 2, 3, 4). However I have
yet  to  write  a  detailed  explanation  of  one  of  the  most
important  buffering  systems  in  hydroponics,  which  is  the
carbonic acid/bicarbonate buffer. This buffer is significantly
more  complicated  than  the  simpler  buffer  created  using
phosphoric acid species, as it not only relies on ions present
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in solution but also on the partial pressure of carbon dioxide
in the atmosphere. In this article I will attempt to explain
this buffering system in detail, shining some light into the
limitations of this buffer and how changing different key
variables  can  fundamentally  affect  the  way  it  works  in
hydroponics.

Chemical reactions involved in the carbonic acid/bicarbonate
buffer. Taken from here.

A buffer is nothing more than a pair of chemical species in
solution that are present at a certain pH, that can react with
additional  H3O+  or  OH-  ions  that  are  introduced  into  the
solution. Since these ions control the value of pH, anything
that prevents their concentration from changing will keep the
pH stable. Distilled water, for example, has absolutely no
buffering capacity since within it there is nothing that can

react with incoming H3O+ or OH– ions that are added to the
solution. Distilled water should therefore have a pH of 7.0,
it does not because we live in an environment where an acid
can always be generated from the air. This acid – carbonic
acid – is generated in water whenever it’s put into contact
with  a  carbon  dioxide  containing  atmosphere.  This  makes
distilled water have a pH of around 5.6.

To be able to calculate the pH we need to consider all the
chemical  equilibrium  reactions  that  happen,  these  are
summarized here and in the image above. We must consider that
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carbon  dioxide  will  dissolve  in  water  to  always  satisfy
Henry’s  law,  that  dissolved  carbon  dioxide  will  be  in
equilibrium  with  carbonic  acid,  that  carbonic  acid  can

dissociate into a H3O+ ion and a bicarbonate ion and that a
bicarbonate ion can further dissociate into an additional H3O+
ion and a carbonate ion. To solve all of this we must also
consider that charge neutrality must be preserved, meaning
that the sum of all molar charges of all positive ions must be
equal to the molar charges of all negative ions. To carry out
these calculations I routinely use the freely available Maxima
software. Below you can see the code I use to solve this
system in Maxima (constants are taken from here):

[kw : 10^(-14.0), kh: 1.7*10^(-3.0), kc1: 2.5*10^(-4.0), kc2:
4.69*10^(-11.0), co2: 1.32*10^-5];
log10(x) := log(x)/log(10) ;
pH(x) := float(-log10(x));

float(solve([h*oh=kw,  h  =  2*co3+hco3+oh,  kh=h2co3/co2,
kc1=(hco3*h)/h2co3, kc2=(co3*h)/hco3],[oh, co3, hco3, h2co3,
h]));

This is the solution obtained for the molar concentrations
(rounded for clarity):

oh    = 4.21*10^-9
co3   = 4.68*10^-11
hco3  = 2.36*10^-6
h2co3 = 2.24*10^-8
h     = 2.37*10^-6

After  executing  this  code  you  will  get  several  different
possible solutions, but the only one that interests us is the

one where the H3O+ (h) concentration is a positive number (this
solution is showed above). We can then use the pH function to
calculate the value of pH for this H30+ concentration, which
gives us a value of 5.62, this matches the real measurement of
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a  distilled  water  solution  at  25C  under  a  387ppm  carbon
dioxide atmosphere. Note that the amount of none dissociated
acid  in  solution  is  very  small.  Taken  to  mass,  the
concentration of carbonic acid is 0.00138 ppm. However the
concentration of bicarbonate is significantly greater, at 3.6
times the concentration of undissociated carbonic acid. This
explains why the pH drops so much, since a significant amount
of  the  generated  carbonic  acid  ends  up  dissociating  and

contributing H3O+ ions to the solution. This also shows you how
little  acid  is  needed  to  drop  the  pH  of  an  unbuffered
solution.

To create the buffer with the biggest possible strength we
would need to add enough strong base to shift the pH to the
point  where  the  pH  equals  the  pKa  (which  is  just  -
Log(equilibrium constant)) of the joint reactions created from
the reaction of carbon dioxide with water to create carbonic
acid  and  the  subsequent  dissociation  of  this  acid  into

bicarbonate and H3O+. This point is at 6.3 under atmospheric
conditions at 25C. This can be achieved with the code below:

[kw : 10^(-14.0), kh: 1.7*10^(-3.0), kc1: 2.5*10^(-4.0), kc2:
4.6910^(-11.0), co2: 1.32*10^-5, h:10^(-6.3)];
float(solve([hoh=kw,  base+h  =  2co3+hco3+oh,  kh=h2co3/co2,
kc1=(hco3h)/h2co3,  kc2=(co3h)/hco3],[oh,  co3,  hco3,
h2co3,base]));

This  is  the  solution  obtained  for  the  molar
concentrations(rounded  for  clarity):

oh    = 1.99*10^-8
co3   = 1.04*10^-9
hco3  = 1.11*10^-5
h2co3 = 2.24*10^-8
base  = 1.07*10^-5

The pH here is set to 6.3 and we can see that to get there we

would need to add a base at a concentration of 1.07*10-5.0. If



this base was KOH this would imply adding it at a rate of 0.6
ppm. We can see how the pH changes as a function of adding
base or acid from this point. If at this point we decided to
double the addition of strong base we would get to 6.57,
tripling it would take us to 6.73 and adding 10 times more
base would take us to 7.25. The buffer is indeed resisting the
increase in pH by basically drawing CO2 from the air to react
with the incoming base as base is added to the solution.
However you might notice that under equilibrium conditions the
buffering capacity of this system is very low. Just 6 ppm of a
KOH equivalent strong base addition can strongly affect the pH
– taking it from 5.6 to 7.25 – so how can the carbonic
acid/bicarbonate buffer be effective at all in hydroponics?

The answer is in the first image in this post. The equilibrium
reaction between carbonic acid and water plus carbon dioxide
in  water  (k23/k32)  is  fundamentally  slow.  We  can  take
advantage of this by generating larger amounts of carbonate
species in solution through the use of exogenous carbonate or
bicarbonate additions and then setting the pH at a lower value
to generate more carbonic acid, this acid will then take some
significant time to reach equilibrium. This is the reason why
using  tap  water  with  a  significantly  high  alkalinity  can
provide a surprisingly stronger buffer than what would be
expected  at  equilibrium  and  it  also  has  some  interesting
consequences in the use of nutrient solutions.

Let’s  consider  a  case  where  there  is  no  decomposition  of
carbonic acid – let’s suppose it’s extremely slow – and say we
add 100 ppm of potassium carbonate into a solution and then
set the pH back to 5.8 using phosphoric acid. In this case the
predominant reactions in solution would be the dissociation of
dihydrogen phosphate to hydrogen phosphate and H3O+ and the
carbonic  acid  dissociation  discussed  before.  In  order  to
properly  consider  this  case  we  must  also  introduce  two
additional equations, mainly the mass balance equations for
the phosphate and carbonate species, since this time we are



assuming no carbon dioxide is ever lost to the atmosphere.
Note that I have changed the equilibrium constant for the

carbonic acid reaction here to 10-6.3 where carbonic acid is now
“apparent carbonic acid”. You can see the equation system and
solution below:

[kw  :  10^(-14.0),  kh:  1.7*10^(-3.0),  kc1:  10^-6.3,  co2:
1.32*10^-5,  kp:10^-7.2,  total_p:  1.7*7.2310^-4,  total_c:
7.23*10^-4];

float(solve([h*oh=kw,  total_c=hco3+h2co3,  total_p=h2po4+hpo4,
2*total_c+h  =  hco3+oh+h2po4+2*hpo4,  kc1=(h*co3h)/h2co3,
kp=(hpo4*h)/h2po4],[hco3, h2co3, h2po4, hpo4, h, oh]));

This  is  the  solution  obtained  for  the  molar
concentrations(rounded  for  clarity):

hco3   = 1.72*10^-4
h2co3  = 5.50*10^-4
h2po4  = 0.00118
hpo4   = 4.64*10^-5
h      = 1.60*10^-6

The final pH of this solution is very close to 5.8 and the
concentration of P is 47.9 ppm with K at 38.10 ppm. Notice
however that apparent carbonic acid has a concentration of

5.50*10 - 4  M,  which  implies  that  the  system  is  not  at
equilibrium since this amount is significantly larger than
what  we  would  expect  from  Henry’s  law.  If  we  reduce  the
concentration  of  carbonic  acid  to  half  then  the  pH  will
increase to 6.01, as we would expect from extracting an acid
from the solution. The implication is that – with time – the
pH of this solution is going to slowly increase, as carbonic
acid decomposes and the solution reaches an equilibrium with
the  atmospheric  carbon  dioxide  level.  This  is  also  why
nutrient solutions that are prepared with tap water high in
carbonates and then aerated will tend to show a rapid increase
in pH – even if the solution is not fed to plants – as the
reaching of equilibrium is accelerated by the agitation of the



solution and the contact with air (that allows CO2 in solution
to escape).

As  soon  as  the  above  solution  is  prepared  it  offers  a
substantially superior buffering capacity when compared with a
solution containing only phosphates. This is why water with
high alkalinity tends to provide better pH stability in drain
to waste type systems when compared with solutions prepared
with RO water. This water contains a significant amount of
carbonates that are turned into carbonic acid and bicarbonate
as  soon  as  the  pH  is  lowered  to  the  pH  range  used  in
hydroponics. As long as the solution is used quicker than the
carbonic acid decomposes, there will be a substantial increase
in pH stability.

If you are using RO water or water with low alkalinity to
prepare your solutions you can obtain a similar effect by
adding 100-200 ppm of potassium carbonate before you start
preparing  the  nutrient  solution,  you  can  similarly  use
bicarbonate but I would recommend using potassium carbonate,
as it is cheaper. It would also be advisable to use the
solution  as  fast  as  possible,  since  time  will  cause  the
solution to reach equilibrium and the pH to increase. This
effect will take much longer if the CO2 concentration is higher
– which is true for setups that use enriched CO2 – or if the
temperature is lower, which increases the solubility of CO2.

Hydroponics  nutrients  and
microgreens
One of the most important goals in microgreens is to maximize
the amount of weight gained by shoots from seed to harvest.
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Since the entire upper body of the plant is harvested and
plants are sold by weight, maximizing the weight gain is vital
in order to obtain the highest possible margins in a crop
cycle. Hydroponically cultured microgreens offer the grower an
unprecedented control over the microgreens’ nutrition, with
the ability to tightly control nutritional parameters in order
to maximize this weight. In this article we are going to take
a look into the scientific literature surrounding microgreens
and what we know about maximizing their yield and quality
using  nutrient  solutions.  I  will  use  the  table  below  to
reference different articles in the literature.

Number Species Studied Link

1 Broccoli
FlograGro,
sterile,
compost

https://www.frontiersin.org/articles/10.3389/fnut.2017.00007/full

2
Purple
Cabbage

Nutrient
sol conc

https://www.scielo.br/scielo.php?pid=S1983-21252019000400976&script=sci_arttext&tlng=en

3
Table
Beet

Calcium
Nitrate 

https://www.tandfonline.com/doi/abs/10.1080/19315261003648241

4 Radish
Calcium
Chloride

https://bearworks.missouristate.edu/theses/3328/

5 Basil 
Sodium
Selenate

https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.9826

Published  articles  talking  about  hydroponic  nutrients  and
microgreen yield or quality
Despite the overwhelming growth in the microgreen industry
during the past 10 years, the amount of research looking into
microgreen nutrition has been surprisingly limited, with only
a  handful  of  papers  looking  at  the  relationship  between
nutrition  and  yields  or  quality.  Paper  one  contains  a
comparison  between  microgreens  grown  in  either  compost,
sterile water or a solution using a 0.4% FloraGro Advanced
Nutrient  solution  (4mL/L).  The  results  show  clear  weight
benefits  from  using  hydroponic  nutrients,  with  the  weight
being markedly higher (mean of 24.64g vs 21.01g) between the
sterile and hydroponic treatments. However the concentration
of different minerals was actually lowest in the plants using
a hydroponic nutrient.
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Table taken from article number three

Papers three and four look at different forms of Ca nutrition
– either Ca chloride or Ca nitrate – and different ways to
apply  this  treatment  to  see  if  it  makes  a  difference  in
microgreen  production.  Paper  three,  shows  a  statistically
significant gain in weight when using calcium nitrate, either
applied into the media pre-cultivation or applied within a
nutrient  solution.  The  best  results  were  found  when  both
treatments were carried out and represented an increase of
more than double in terms of weight over the control. The fact
that paper four fails to show a consistent increase in yields
using Ca chloride, suggests that this has to do mainly with
the  nutritional  contribution  of  the  nitrate  and  not  the
calcium ions.

Paper two is rather interesting, as it looks into different
nutrient solution strengths (either 0, 50 or 100%) using a
solution published for hydroponic forage. The results – in the
table below – clearly show that there is a strong weight gain
as  the  nutrient  solution  concentration  increases,  again
showing that at a full strength solution there is an expected
increase of more than 2x in the final weight. However this
comes – in agreement with paper one – at the potential expense
of nutritional value. The paper shows a significant decrease



in carotenoid concentration when nutrient solution strength
increases,  which  the  paper  hypothesis  is  caused  by  high
nutrient concentrations slowing down plant metabolism. This
hypothesis is however hard to reconcile with the larger and
heavier plants.

Table taken from article number two

Article five is also an interesting example of the use of
microgreens to carry out antioxidant supplementation. Sodium
selenate was used to prepare a solution to treat basil seeds
and the resulting microgreens were found to be fortified with
selenium. This might be an interesting way to incorporate
mineral  micro  nutrients  into  microgreens  and  therefore
increase their presence within our diet. However there is also
the  potential  to  hyperaccumulate  these  nutrients,  so
experiments of this kind should not be done with adequate care
and  lab  analysis  to  ensure  proper  doses  of  these  micro
nutrients.

From all of the above it seems quite clear that the research
of hydroponic nutrients in microgreen production is in its
very early infancy. So far only a handful of research papers
have been published on the subject and the conclusions so far
seem to be that hydroponic nutrient solutions – in a couple of
different forms – tend to significantly increase microgreen



production weights. However it is also clear that there is a
strong  interaction  with  the  nutritional  value  of  the
microgreens and using nutrients can in fact lead to decreases
in the nutritional value, despite the significant weight gain
from the process.

The echoes of the above can be seen in a wide variety of
anecdotal experiences on youtube channels and forums. Growers
running side by side experiments seem to have found the same
phenomena  (see  this  video  for  an  example),  where  adding
nutrients increases yields significantly but at the expense of
some  of  the  flavor  –  and  potentially  nutritional  –
characteristics  of  the  microgreens.  Some  growers  have
therefore  chosen  to  avoid  nutrients  –  to  preserve  flavor
qualities – while others have chosen to use nutrients because
of the increases in marketable appearance and yield.

There is a lot of research to be done on the subject. It would
certainly be interesting to find out if we could somehow have
the best of both worlds.

Is my water source good for
hydroponics?
Before starting your hydroponic project it is important to
know whether your local water source can actually be used to
water plants. Not all water sources are compatible with plants
and some require special adaptations to the nutrient solution
in order to become viable. In this post I will talk about the
things that can make a water source unsuitable for hydroponics
and the sort of modifications that would be required to make
these water sources work with plants. The main points in the

https://www.youtube.com/watch?v=lNOhmMwAFbc
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post are summarized in the diagram below.

Diagram to figure out if your water can or cannot be used in
hydroponics

Tap and well water sources can contain different substances
characteristic  of  the  natural  environment  where  the  water
originated.  Water  that  goes  through  rocky  formations
containing a lot of limestone will contain high amounts of
calcium  and  carbonates,  while  water  that  goes  through
dolomitic rock will contain significant amounts of magnesium
as well. Water that contains high amounts of Ca or Mg is not
necessarily problematic and can be dealt with by adapting the
nutrient solution to account for these ions, you can read more
about hard water and its use in hydroponics by reading my
previous post on the subject. These water sources usually need
a significant amount of acid to reach the 5.5-6.5 range, so
accounting for the nutrient contribution of the acid in the
nutrient formulation is also fundamental.

The most problematic water sources will contain high amounts
of either sodium or chlorides, two ions that we cannot deal

https://scienceinhydroponics.com/2017/03/do-you-really-need-ro-water.html


with easily in hydroponics and that can be specially bad for
plants. You can read more about sodium in hydroponics here,
and  chlorides  and  hydroponics  here.  Sodium  concentrations
below 200 ppm can be manageable, but any higher concentrations
will invariably lead to issues in hydroponics. Chlorides are
even more harmful with the threshold for problems at just 50
ppm. Iron can be similarly problematic as sources that contain
high amounts of Fe can be incompatible with plants and the Fe
can be difficult to remove. This is why the first step in
analyzing  a  water  source  should  always  be  an  analysis
including Na, Cl and Fe. If the values are too high then this
water source will require reverse osmosis to be usable.

If Na, Cl and Fe are within limits then we can ask the
question of whether this water source is approved for human
consumption. If it is then we know that the amounts of heavy
metals within it should be low, as well as the amount of other
ions, such as nitrate and ammonium. If the water has not been
approved by a utility company for human consumption then we
need to do heavy metal and nitrate/ammonium analysis to figure
out if this is actually safe to use. In some cases well water
sources can be perfectly fine to grow plants but the products
might  be  contaminated  with  heavy  metals  that  make  them
unsuitable for human consumption.

If a water source is within limits for all of the above then
we  should  take  into  consideration  whether  we  need  custom
formulations  or  whether  we  can  get  away  with  using

https://scienceinhydroponics.com/2017/03/some-things-you-should-know-about-sodium-in-hydroponics.html
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commercially  available  hydroponic  products  “as  is”.  For
sources that have relatively low amounts of Fe, Ca and Mg this
is usually a possibility but for sources that have quantities
of Fe above 2.5 ppm, Ca above 10 ppm or Mg above 5 ppm, it is
advisable to go with a custom formulation that can account for
the amount of minerals already present within the water. This
can still mean using commercially prepared fertilizers only
that the mixing ratios and schedules need to be adapted to
manage what is already present in the water, so significant
deviations  from  the  manufacturer  suggestions  are  to  be
expected.

Another important point is that none of the above accounts for
potential biological activity within the water, which can be a
big  source  of  problems  in  plant  culture.  For  this  reason
always make sure to run the water through carbon filtration
and  have  in-line  UV  filters  to  ensure  that  no  bacteria,
viruses or fungal spores get to your plants through your water
source.

A guide to different pH down
options in hydroponics
The  control  of  pH  in  hydroponic  nutrient  solutions  is
important. Plants will tend to increase the pH of solutions in
most cases – as nitrate uptake tends to dominate over the
uptake of other ions – so most growers will tend to use pH
down much more than they use pH up. While most growers prefer
to use concentrated strong acids, there are a wide variety of
different  choices  available  that  can  achieve  different
outcomes at different cost levels. In this post I want to talk
about different pH down options in hydroponics, along with

https://scienceinhydroponics.com/2020/05/a-guide-to-different-ph-down-options-in-hydroponics.html
https://scienceinhydroponics.com/2020/05/a-guide-to-different-ph-down-options-in-hydroponics.html


some of their advantages and disadvantages.

Hydrangeas change color as a response to different pH values
in soil

The first group of pH down chemicals are strong acids. These
are technically acids with very low pKa values, meaning they
react instantly with water to generate at least one mole of
hydronium  for  each  mole  of  added  acid.  They  offer  the
strongest ability to drop pH per unit of volume, which makes
them more cost effective. However the fact that they often
need to be diluted to make the pH addition process practical –
because of how much the concentrated forms can change pH – can
make their use more difficult than other forms of pH down.
These are the most common options:

Phosphoric acid (from 20 to 85% pure): This acid doubles as a
plant  nutrient,  meaning  plants  will  be  affected  by  the
phosphorus added. It is commonly used in food – so food grade
phosphoric acid can be bought cheaply – it also has additional
deprotonations with strong buffering at a pH value of 7.2 with
buffering capacity against bases getting stronger as the pH
goes down all the way to 6.2. This is the most commonly used
acid by hydroponic growers.

Sulfuric acid (from 20 to 98% pure): This acid is commonly
used  in  car  batteries  and  offers  the  largest  pH  dropping
ability per unit of volume among all the strong acids. It is
however  important  to  use  food  grade  sulfuric  acid  in



hydroponics as normal battery acid can include some metallic
impurities – from the fabrication process of sulfuric acid –
that might negatively affect a hydroponic crop. Food grade
sulfuric acid is safe to use in hydroponics. A big advantage
is that plants are quite insensitive to sulfate ions – the
nutrient provided by sulfuric acid – so adding sulfuric acid
does not really affect the nutrient profile being fed to the
plants.  Note  however  that  most  battery  acid  products  in
developed countries are also ok, as the quality of these acids
demands the metallic impurities (more commonly iron) to be
quite low. If in doubt, you can do a lab test of the sulfuric
acid to see if any impurities are present.

Nitric  acid  (from  30-72%  pure):  This  acid  also  provides
nitrate ions to plants, so it also contributes to a solution’s
nutrient  profile.  It  is  however  more  expensive  than  both
phosphoric and sulfuric acids and more heavily regulated due
to its potential use in the fabrication of explosives. The
acid itself is also a strong oxidant, so storage and spillage
problems  are  significantly  worse  than  with  phosphoric  and
sulfuric acid. Although this acid can be used in hydroponics,
it is generally not used by most growers due to the above
issues.

Diagram showing the dissociation of a strong vs a weak acid

The second group of pH down chemicals are weak acids. These



are acids that do not generate at least one mole of hydronium
ions per mole of acid when put in solution, but do provide a
pH down effect as some hydronium ions are generated. This
means that larger additions will be needed to cause the same
effect but at the same time their handling is usually much
safer than for strong acids. Here are some options that could
be used as a pH down.

Common food grade organic acids (citric acid, acetic acid,
etc): Organic acids are a very low cost way to lower the pH of
a hydroponic solution as many of these are available off the
shelf in super markets in food grade qualities. The main issue
with  organic  acids  –  which  anyone  who  has  used  them  has
probably experimented – is that the effect of the acids does
not seem to hold (pH goes up quickly after the acid is added
and the solution comes into contact with plants). This is
actually  caused  by  the  fact  that  plants  and  microbes  can
actually use the conjugated bases of these ions nutritionally,
causing  an  increase  in  pH  when  they  do  so.  The  initial
addition of say, citric acid, will drop the pH – generating
citrate ions in the process – these will then be absorbed by
microbes and plants, increasing the pH again rapidly. The use
of these acids is therefore not recommended in hydroponics.

Monopotassium phosphate (MKP): This salt contains the first
conjugate base of phosphoric acid and is therefore way less
acidic than it’s full on acid partner. Since it’s a solid its
addition is way easier to control compared to the acid and it
can  also  be  handled  safely  with  minimal  precautions.  It
provides both potassium and phosphorous to a solution – both
important nutrients – and therefore needs to be used carefully
when used as a pH down agent (as it significantly affects the
nutrient profile of the solution). Since it adds both a cation
that  helps  counter  pH  increases  by  plants  and  phosphate
species it provides a double buffering effect against future
pH increases. It is a very common ingredients of commercial pH
down solutions for this reason.



Monoammonium phosphate (MAP): Similar to the above, except for
the fact that this salt adds nitrogen as ammonium, which is a
nitrogen form plants are very sensitive to. Plants will uptake
ammonium preferentially over any other cation, so MAP provides
a very strong buffering effect against nitrate absorption,
with potential problems if too much is used (although this
depends on the plant species being grown). When MAP is used as
a  pH  down  its  addition  therefore  needs  to  be  carefully
controlled in order to avoid excess usage. Due to the presence
of  this  powerful  ammonium  buffer,  MAP  is  generally  very
effective at preventing future increases in pH, although this
might be at the expense of yields or quality depending on the
crop.

Potassium bisulfate: This salt contains the first conjugate
base of sulfuric acid and is therefore a powerful tool to
decrease the pH of a solution. The resulting sulfate ions
provide no chemical buffering effect, so the only buffering
effect in terms of plant absorption comes from the addition of
potassium ions, which can help mitigate nitrate absorption.
This salt is also considerably expensive compared with the two
above – which are commonly used fertilizers – and is therefore
seldom used in hydroponics.

Which  is  the  best  pH  down  solution?  It  depends  on  the
characteristics of the growing system. Generally a pH down
solution needs to be easy to administer, cheap and provide
some  increase  in  buffering  capacity  overtime  –  to  make
additions  less  frequent  –  so  the  pH  down  product  or
combination of products that best fits this bill will depend
on which of the above characteristics is more important for
each particular user.

People who use drain-to-waste systems usually go for stronger
acids, since they only adjust pH once before watering and then
forget  about  the  solution.  This  means  that  additional
buffering capacity in the solution is probably not going to be
very important and cost is likely the most important driving



factor. If injectors are used then the strong acids are often
diluted to the concentration that makes the most sense for
them and most commonly either phosphoric or sulfuric acids are
used.

For growers in recirculating systems options that adjust pH
with  some  added  buffering  capacity  are  often  preferred,
because  the  same  solution  is  constantly  subjected  to
interactions  with  the  plants.  In  this  case  it’s  usually
preferred to create a mixture of strong and weak buffering
agents so that both quick decreases in pH and some increased
protection  from  further  increases  can  be  given  to  the
solution. In automated control systems using something like a
concentrated  MKP  solution  is  preferable  over  any  sort  of
solution containing phosphoric acid, as issues from control
failures are less likely to be catastrophic.

Microgreen  production  at
home: Getting the materials
Microgreens  are  plants  that  are  harvested  for  consumption
during the seedling stage, normally a week or two after a seed
has been germinated. They can be one of the most nutritionally
dense plant foods out there, given that they contain a lot of
the nutrition already present in seeds plus phytonutrients
derived from the beginning of the plant growing process (see
here).

For these reasons and the fact that they can be grown in small
amounts of space, all year round, I have decided to do a small
home microgreen project in order to produce a relatively large
amount of microgreens for home consumption. Since I have no
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experience creating setups of this type – I have worked in
hydroponic forage productions but never microgreens for human
consumption – I decided to look for the best possible setup
and in the end decided to base this project on the setup
described in this youtube video, following some of the advice
given by this microgreen grower. Note that I do not know if
any of the financial claims in this video are true or even
likely  to  be  true,  I  just  liked  the  growing  setup
configuration.

I intend to produce microgreens like these

Using my own experience in hydroponics I then went for the
materials that I thought best matched what was given in the
video and ended up with the following list:

Styrofoam covers for trays (these you can definitely get1.
cheaper, but these are the best compromise I could find
on  amazon,  they  are  used  in  the  dark  phase  of  the
germination process)
Rack to place the trays in (there might be cheaper ones2.
but I needed something aesthetic as it will be visible
in my apartment)
LED lights to use for growing (2 per rack section) (cool3.
spectrum to limit etiolation, 2 tubes per rack space)
Trays  (pizza  dought  box)  .  (note  that  this  is4.
polypropylene, not fiber glass, 5 trays fit in the rack)
Coco mats5.

https://www.youtube.com/watch?v=fO9Q2bnQvLo
https://www.amazon.com/gp/product/B01LVWMCIY/ref=ox_sc_act_title_2?smid=A3TI0JB352VNFP&psc=1
https://www.amazon.com/gp/product/B07F64XSWZ/ref=ox_sc_act_title_3?smid=A2B8I533VYJNXD&psc=1
https://www.amazon.com/gp/product/B0777N38NG/ref=ox_sc_act_title_4?smid=A1HL2V6BJ5PJ50&psc=1
https://www.amazon.com/gp/product/B0029SZRUO/ref=ox_sc_act_title_5?smid=A3AVM34G26KYUP&psc=1
https://www.amazon.com/Envelor-Coco-Mulch-Grow-Mats/dp/B07MT6BPD5/ref=sxbs_sxwds-stvp?cv_ct_cx=food+safe+coco+coir&dchild=1&keywords=food+safe+coco+coir&pd_rd_i=B07MT6BPD5&pd_rd_r=19acf4cf-9139-4c8e-9447-57b999a99c7a&pd_rd_w=RzJNB&pd_rd_wg=e4bCC&pf_rd_p=183579a1-f0e6-4556-8e39-8fe08e8f8141&pf_rd_r=T4NEZCF7ZESB9J56RFYN&psc=1&qid=1588691916&sr=1-5-dd5817a1-1ba7-46c2-8996-f96e7b0f409c


Sprayer6.
Bamboo sticks used as separators in trays7.
Broccoli seeds (organic, untreated)8.

These  are  all  the  materials  –  besides  water  and  hydrogen
peroxide – that should be required to reproduce the basic
setup I want to recreate. With this setup I will be able to
grow 5 18×24″ racks at the same time, which is a lot of
microgreens for home consumption. My plan is to experiment
with broccoli seeds first – which are relatively cheap and
easy to germinate – then move onto other plants that might be
more expensive and difficult to germinate. Broccoli plants
should germinate in 1-2 days and should be completely ready
for eating in around 7 days. This can be a big difference
compared with something like oregano which might take 6 days
to germinate and then an additional 7-10 days to be ready for
consumption. You can use a reference graph with the production
times of different microgreens here.

I also have significant experience with enhancing germination,
so this setup will provide me with the ideal conditions to
test different germination treatments on the plants. Hopefully
I will be able to cover those in this blog. This project might
also be the perfect opportunity to start a youtube channel so
that you guys can experience the entire setup first-hand.

Nutrient  solution
conductivity  estimates  in
Hydrobuddy
People who use Hydrobuddy can be confused by its conductivity
estimates, especially because its values can often mismatch

https://www.amazon.com/gp/product/B07VLWCG3N/ref=ox_sc_act_title_7?smid=A11IAZ3A9BNR28&psc=1
https://www.amazon.com/gp/product/B00MMOVIC6/ref=ox_sc_act_title_8?smid=AAFUY8Q6EU21B&psc=1
https://www.trueleafmarket.com/collections/micro-greens-planting-seed/products/broccoli-waltham-29-microgreens-seeds?variant=46365822152
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the  readings  of  conductivity  meters  in  real  life.  This
confusion can stem from a lack of understanding of how these
values are calculated and the approximations and assumptions
that are made in the process. In this post I want to talk
about theoretically calculating conductivity, what the meters
read and why Hydrobuddy’s estimations can deviate from actual
measurements.

Standard Hoagland solution calculation using HydroBuddy with a
set of basic chemicals.

The  images  above  show  the  use  of  HydroBuddy  for  the
calculation  of  a  standard  Hoagland  solution  for  a  1000L
reservoir. The Hoagland solution’s recipe is expressed as a
series of elemental concentrations, all of them in parts per
million  (ppm)  units.  The  results  show  that  the  final
conductivity  of  this  solution  should  be  1.8  mS/cm  but  in
reality the conductivity of a freshly prepared full strength
Hoagland solution will be closed to 2.5mS/cm. You will notice
that HydroBuddy failed to properly calculate this value by an
important margin, missing the mark by almost 30%. But how does



HydroBuddy calculate this value in the first place?

Conductivity  cannot  be  calculated  by  using  the  amount  of
dissolved  solids  in  terms  of  mass  because  charges  are
transported per ion and not per gram of substance. To perform
a  conductivity  calculation  we  first  need  to  convert  our
elemental values to molar quantities and then associate these
values  with  the  limiting  molar  conductivity  of  each  ion,
because each ion can transport charge differently (you can
find the values HydroBuddy uses in the table available in this
article). This basically means we’re finding out how many ions
we have of each kind and multiplying that amount by the amount
each  ion  can  usually  transport  if  it  were  by  itself  in
solution. The sum is the first estimate in the calculation of
conductivity.

Conductivity  calculations  carried  out  by  HydroBuddy,  also
showing conductivity contributions per ion. This is done by
converting  ppm  quantities  to  moles,  then  multiplying  by
limiting molar conductivity values here.

The image above shows the result of these calculations for an
example with a perfectly prepared Hoagland solution. You can
see that the estimate from limiting molar conductivity is
initially 2.7 ms/cm – much closer to the expected 2.5 mS/cm –
but then HydroBuddy makes an additional adjustment that lowers

http://www.currentseparations.com/issues/18-3/cs18-3c.pdf
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this down to 1.8 mS/cm. This is done because limiting molar
conductivity values make the assumption of infinite dilution –
what the ion conducts if it were all by itself in solution –
but in reality the presence of other ions can decrease the
actual  conductivity  things  have  in  solution.  HydroBuddy
accounts for this very bluntly, by multiplying the result by
0.66,  in  effect  assuming  that  the  measured  value  of
conductivity will be 66% of the value calculated from the
limiting molar conductivity values. This is of course wrong in
many  cases,  because  the  reduction  in  activity  due  to  the
presence of other ions is not as strong. However it can also
be  correct  in  many  cases,  primarily  depending  on  the
substances that are used to prepare the formulations and the
ratios between the different nutrients.

In my experience HydroBuddy tends to heavily underestimate the
conductivity  of  solutions  that  receive  most  of  their
conductivity from nitrates, as this example, but it tends to
do much better when there are large contributions from sulfate
ions. When I first coded HydroBuddy all my experiments were
being done with much more sulfate heavy solutions, so the
correction parameter value I ended up using for the program
ended up being a bad compromise for solutions that deviated
significantly from this composition. With enough data it might
be  possible  to  come  up  with  a  more  advanced  solution  to
conductivity estimations in the future that can adjust for
non-linear  relationships  in  the  conductivity  and  activity
relationships of different ions in solution.

If your measured conductivity deviates from the conductivity
calculated in HydroBuddy you should not worry about it, as
HydroBuddy’s values is meant to be only a rough estimate to
give you an idea of what the conductivity might be like but,
because of its simplicity, cannot provide a more accurate
value at the moment. The most important thing is to ensure
that  all  the  salts,  weights  and  volumes  were  adequately
measured in order to arrive at the desired solution.



Sugars in hydroponic nutrient
solutions
Carbohydrates are an integral part of plants. They produce
them from carbon dioxide, requiring no additional external
carbon  inputs  for  the  process.  However,  since  plants  can
absorb molecules through their leaves and roots, it is perhaps
natural to wonder whether they could also get carbohydrates
through the roots and avoid some of the stress they go through
in order to produce these molecules from scratch. If plants
can uptake sugar and we feed them sugars then will we get
fruits with more sugars and bigger plants? It’s an interesting
question that I will try to answer within this post, looking
at  the  potential  use  of  simple  sugars  within  hydroponic
nutrient solutions.

Simple table sucrose

Although the above idea sounds straightforward, it hardly has
any interest in the scientific literature or the commercial
hydroponic industry. You will find no significant number of
research papers studying the use of sugars – simple or complex
–  in  hydroponic  nutrient  solutions  and  very  few  studies
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looking at sugar uptake and the interactions of in-vitro plant
tissue with simple sugars. This lack of interest and use is no
accident, it comes from an already established understanding
of plant physiology and the realization that it is not cost
effective,  useful  or  needed  to  add  sugars  to  nutrient
solutions.

Let us start with what we know about the subject. We know that
plants exude very significant amount of sugars through their
root systems and we also know that they can re-uptake some of
these sugars through their roots (see here). From this paper
it seems that maize plants could uptake up to 10% of the
sugars they exude back into their root systems, which implies
that some exogenous sugar application could find its way into
plant roots. Even worse, transporting this sugar up to the
shoots is extremely inefficient, with only 0.6% of the sugar
making it up the plant. This tells us that most of the sugar
is wasted in terms of plant usage, a large majority never
makes it into the plant and the little amount that makes it
actually never goes up the plant. Plants are simply not built
to transport sugars in this manner, they evolved to transport
sugars down to roots and to fruits.

But what about the roots? Given that the plant tissue that
would be in direct contact with the sugar is the roots, it is
logical  to  think  about  positive  effects  affecting  them
primarily. We have some studies about the influence of sugar
solutions in seedlings (like this one) which does show that
sugars can stimulate the growth of new root tissue in very
small  plants.  However  in  large  plants  most  of  the  sugar
content in the roots will come from transport from the higher
parts of the plant and the local sugar concentration will be
low. Seedlings can likely benefit from sugars in the roots
because leaves are producing very little at this time but
larger plants are unlikely to benefit from this effect.

There is however one effect that sugars have that is very
clear, they feed the rhizosphere around the plant’s roots.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.704.2361&rep=rep1&type=pdf
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Although plants try to care about this themselves – by exuding
an important amount of sugars and organic acids – an exogenous
sugar addition would most likely boost the amount of microbes
around plant roots (both good and bad ones). The profile of
sugars and acids exuded by plants is most likely tuned by
evolution to match the microbes that are most beneficial to it
and an unintended and negative effect of sugars is to boost
all  microbe  populations  at  the  same  time,  regardless  of
whether  they  are  good  or  bad  for  the  plant.  This  also
increases  oxygen  demand  around  roots  –  because  aerobic
microbes will want to oxidize these sugars – reducing the
amount of oxygen available to plant roots. For this reason,
any application of a sugar to a nutrient solution requires the
inoculation of the desired microbes beforehand, to ensure no
bad actors take hold. It also requires the use of a media with
very  high  aeration,  to  prevent  problems  caused  by  oxygen
deprivation.

Sadly there aren’t any peer reviewed papers – at least that I
could find – investigating the effect of exogenous sugars on
the yields of any plant specie in a hydroponic environment.
Given  our  understanding  of  plant  physiology,  any  positive
effects related with anecdotal use of sugars are most likely
related with positive effects in the rhizosphere that are
linked  with  improved  production  of  substances  that  elicit
plant growth in the root zone by favorable microbes. This is
mainly because it is already well established that transport
of  sugars  within  plants  from  the  roots  to  the  shoots  is
incredibly inefficient, so any contribution of the roots to
sugar  uptake  will  be  completely  dwarfed  by  the  actual
production of sugars from carbon dioxide in the upper parts of
the plant. It is not surprising that no one seems to want to
do a peer reviewed study of a phenomenon whose outcome is
already  largely  predictable  from  the  accepted  scientific
literature.

If you’re interested in the use of sugars in hydroponics, it



is probably more fruitful to focus on microbe inoculations
instead. Sugars themselves are bound to provide no benefit if
they are not coupled with a proper microbe population and,
even then, you might actually have all the benefits without
any sugar applications as the microbes can be selected and fed
by plant root exudates themselves in mature plants although
sugars might provide some benefits in jump starting these
populations, particularly in younger plants. Also, bear in
mind that there is also a very high risk of stimulating bad
microbes with the use of sugars, especially if oxygenation is
not very high.

Controlling pH in hydroponics
using only electricity
The ability of plants to assimilate nutrients changes as a
function of pH. This makes maintaining the pH of nutrient
solutions within an acceptable range – most commonly 5.8 to
6.2 – one of the most important tasks in a hydroponic crop.
This is commonly done with the addition of strong acids or
bases to decrease or increase the pH when it drifts away from
the intended value. This requires either manual monitoring
with  careful  addition  of  these  substances  or  automated
processes using pumps to ensure the pH always remains at the
correct  value.  However  both  of  these  methods  lack  fine
control, require a lot of maintenance and monitoring and can
lead  to  costly  mistakes.  Today  I  want  to  discuss  an
alternative method that relies on a completely different idea
to control pH, the idea that we can oxidize or reduce water
using  electricity  to  achieve  changes  in  pH.  Yes,  you  can
change pH using literally only electricity.

https://scienceinhydroponics.com/2020/04/controlling-ph-in-hydroponics-using-only-electricity.html
https://scienceinhydroponics.com/2020/04/controlling-ph-in-hydroponics-using-only-electricity.html


A modern anion exchange membrane. Fundamental to the idea of
an electricty-only pH control system

Let’s start by discussing pH and talking about how it is

changes. The pH of a solution is calculated as -Log(|H+|) where

|H+| is the molar concentration of H+ ions in solution. In

water, the dissociation constant 1×10-14 (at 25C), always needs

to be respected, so we always know that the product of |H+| and

|OH–| needs to give us this number. When you add acids you

increase |H+| conversely |OH–| decreases and the pH goes down,
when you add bases |OH-| increases, |H+| decreases and the pH
goes up. In simpler terms everything you need to decrease pH

is a source of H+ and everything you need to increase pH is a

source of OH–.

This is where electrochemisty gives us the simplest solution
we could hope for. Water can be oxidized or reduced. When you
run  a  current  through  water  –  above  the  minimum  required
voltage – water splits into hydrogen and oxygen molecules. In
the image below you can see how the water oxidation reaction
generates H+ ions while the reaction on the right generates
OH- ions. When you do this in a single cell – as shown below –
the H+ ions generated at the anode react with the OH- ions
generated at the cathode and the pH of the solution remains
neutral while oxygen is produced at the anode and hydrogen is
produced at the cathode.



The  image  above  shows  the  half  reactions  involved  in  the
oxidation (left) and reduction (right) of water.

However, we can take advantage of ion exchange membranes to
separate these two processes, allowing us to control where
each reaction happens and where the acid or base is generated
(preventing them from just mixing and neutralizing). As a
matter of fact, all we need is to have an electrode in our
nutrient solution and another electrode in an auxiliary cell,
separated  from  our  nutrient  solution  by  an  ion  exchange
membrane. This concept is actually not new and was already
proposed in a 1998 paper to control pH in hydroponic systems.
Although it was never tried in a production system, all the
concepts were validated and were shown to perform adequately
in test solutions.

https://www.actahort.org/books/456/456_32.htm


Image taken from this paper, which discussed the topic of
electrochemical pH control in hydroponic systems at length.

One of the big challenges of this setup is that the cathode
side  involves  hydrogen  gas  evolution  –  which  could  be
dangerous – but can be completely avoided by replacing the
cathode’s half reaction with much more benign chemistry. As an
example – also suggested in the paper above – you can replace
the cathode half-cell with a copper sulfate solution with a
copper electrode, with an anion exchange membrane. This would
allow you to have your reduction reaction be the reduction of
copper onto a copper place, which is a very tame reaction.
Since the membrane only exchanges anions you would only have
sulfate go to your nutrient solution, which is a benign anion
in hydroponic culture. This of course means that your half-
cell electrode and solution would need to be replaced with
time, but this is completely independent from the control
process (much more like refilling a tank of gas). The anode
would only evolve oxygen in your nutrient solution, which is a
potentially beneficial side effect.

Using  a  copper  sulfate  half-cell  would  however  limit  the
control system to lower pH but this is not a problem since
this is the most commonly used operation in hydroponics (very
rarely do people have to increase the pH of their solutions).

https://www.actahort.org/books/456/456_32.htm


If a proper venting system or catalytic recombination system
is used on the cathode side you could also go with the simple
water oxidation/reduction route and be able to increase or
decrease the pH using basically, pure electricity.

I am definitely planning to build one of this setups in the
future. Coupled with modern sensors and micro controllers this
could make it extremely easy to maintain very fine control
over the pH of the solution, compensating – in real time – all
the changes in pH carried out by plants without the risk of
heavily over or under compensating (as it happens when you use
acid/base additions).


