
MyCodo:  an  open-source
solution  for  control,  data
logging and visualization
There are sadly not a lot of open source solutions for data
logging, visualization, and control that have all the features
required to be decently expandable and allow for different use
cases.  Most  open  source  solutions  have  been  developed  by
individuals for their particular needs. The consequence of
this is that the hardware is very specific and difficult to
expand on and the software has been written to be hard-coded
to the hardware, making true wide use by the DIY community
hard. However, MyCodo – a project that was shared with me by a
reader of the blog – seems to get rid of this paradigm,
creating  an  open-source  implementation  that  is  truly
expandable and that offers most of the features anyone would
want in a truly flexible DIY setup. In this post, we will talk
about  this  project,  what  it  offers  and  how  it  could  be
expanded for hydroponic grows of all scales.
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Sample  control  panel  image  taken  from  the  MyCodo  github
project website

MyCodo is centered around a Raspberry Pi as its main computing
hub. Once you install it, the project creates a web interface
in the Raspberry Pi that you can use to manage inputs and the
control actions that are derived from them. Most of the inputs
that are supported by the MyCodo implementation are designed
to be directly connected to the Raspberry Pi, such that the Pi
acts both as the computing brains and the sensor/control hub
for  the  implementation.  When  used  in  this  way,  only  the
Raspberry Pi is required, with whichever sensors and relays
you want to add to it. This can already be powerful but has
the problem that the Raspberry Pi is directly in the middle of
the sensing/control environment and the entire implementation
could  be  vulnerable  to  catastrophic  failure  due  to
interactions with the environment (say water getting on the
Raspberry Pi).

Thankfully, the developer(s) of the MyCodo implementation had
the  vision  to  implement  input/output  options  to  use  MQTT
subscribe/publish mechanics. The MQTT protocol is a messaging
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system where a device in a network can listen to or publish to
different “topics”. So you can have an Arduino that publishes
messages under the topic “HumiditySensor1” that contain the
humidity value measured at each point in time and you can have
it  at  the  same  time  subscribe  to  a  topic  called
“HumidityControl” and when it receives an “on” message in this
topic it turns on a dehumidifier. You can then use MyCodo to
“listen” to the humidity sensor messages, execute its own
control algorithms on it, and publish the adequate control
action to the “HumidityControl” topic whenever it thinks that
a dehumidifier needs to be turned on. This is the way in which
my  custom-built  Arduino/Raspberry  PI  control  implementation
generally works.

Another sample MyCodo panel

MyCodo, therefore, has a lot of flexibility that is not shared
by any other open-source implementations, at least among the



ones I have found, for environmental control. Although there
are no MQTT sensor stations implemented that I could find for
the MyCodo, it should be fairly straightforward to build these
sensing/control stations using Arduinos and the MQTT protocol
and it should then be easy to add these stations to the MyCodo
so that they can benefit from the system’s control interfaces.
In  a  system  like  this  –  with  independent  MQTT  enabled
sensor/control  stations  –  you  can  control  small  or  large
facilities and not depend on the use of a single raspberry pi
to do the entire setup. This means you could use the MyCodo to
control different rooms and be able to have a centralized
sensing setup for all your needs.

I have decided to give MyCodo a try for my latest hydroponic
system. You should expect some videos about this in my youtube
channel along with a github repository containing the code for
the sensing and control stations that I am going to build in
order  to  use  Arduinos  for  turning  relays  on/off  and  send
sensor readings. A Raspberry Pi will be used as the central
control hub for the project, hosting the MyCodo webserver and
code.

Pros  and  cons  of  building
your  own  sensor  and  data
logging system in hydroponics
If you’ve read my blog before, you know how important data
logging is to having a successful hydroponic crop. Data allows
you to monitor and tune the different variables in your grow,
which allows you to give your plants the perfect environment
through their entire growing cycle. However, deciding how to
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do this is not simple, you need to decide if you’re going to
go  with  a  company  that  sells  some  pre-made  data-logging
solution or you need to build everything yourself. In this
post,  I’m  going  to  talk  about  several  pros  and  cons  of
building your own data logging system for your hydroponic
crop.

Pros
You have control over everything. The most important pro when
building your own data logging solution is that you have total
and absolute control over all aspects of it. If you want to
support  some  type  of  sensors  or  have  your  data  stored  a
certain way, there is nothing preventing you from doing this
except your own skills and imagination. If you want to support
an obscure messaging protocol, wireless transmission system,
etc,  it  is  all  up  to  you.  You  won’t  be  limited  by  the
management decisions of an external company and you will be
able to build a system that perfectly caters to your needs.

A simple plant monitoring custom built system. Read more here.

You will be able to leverage low-cost hardware. When building
your  own  system  you  will  be  able  to  get  all  the  parts
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yourself. This means you will be able to substantially reduce
costs. Of course, you’re incurring the important cost of your
time but the hardware itself will be low cost and once you
implement the basic setup you will be able to connect new
rooms and build new logging stations for a fraction of the
cost of buying one commercially.

Take advantage of new hardware quickly. As new technologies
for monitoring environmental variables are invented or the
desire to control new variables comes into play, your ability
to fully control your setup will allow you to take advantage
of new hardware that comes into the scene while companies will
usually be very slow to respond to such changes.

A much deeper understanding. When you build all the monitoring
setup yourself, you will create a lot of understanding about
how the sensors work, how each one of them is calibrated, how
data  is  transmitted,  stored,  etc.  If  you  build  your  own
monitoring setup you will gain a much deeper understanding
than somebody who just buys an off-the-shelf product.

No need for patchwork approaches. When you decide to get a
commercial solution for data logging, one of the issues that
comes along is that you will get the setup from a company that
supports  some  types  of  sensors  but  you  will  often  face
challenges if you want a sensor outside this offering. This
will usually mean buying a setup that includes that sensor
from a completely different company, measuring some variables
with one system and some others with another system.

Cons
No one to support it. The biggest drawback of building things
yourself – or hiring someone to build a custom system for you
– is that you will have no one to help you debug your system
when things go wrong. You will also have limited ability to
delegate this work, as your highly custom system will demand
somebody with a high level of skill to become familiar with it



and operate it with the same level of proficiency as you do. A
custom solution means all of this responsibility will fall on
the shoulders of those who developed the system.

A custom built data logging system to read EC/pH/ORP. Read
more here.

Limited by your knowledge. Although it is true that you will
get a pretty deep understanding of the things you decide to
incorporate into your system, you will also be very limited in
the design and implementation of your system because of your
particular limitations as an individual. A big company that
develops a data logging system will have dozens of people
working on it, and all of their experience will go into the
decisions  that  were  made  in  the  sensor  and  software
implementations. This can mean better sensor choices are made,
more robust communication protocols are used, etc.

Not built for sharing. Custom-built systems usually have the
problem that they are built with poor documentation. Sharing
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is normally not the priority and people will prefer to build
“fast and dirty” in order to get things done. This means that
the code is usually poorly commented and of a lower quality
than what you get from a product that comes from a business.
Although  some  people  who  build  custom  software  that  they
intend to release as open-source implementations will often go
to great lengths to provide great code quality this is rarely
the case when the intention is not to make everything open
source.

Big overhauls are a big problem. Since your custom building
efforts  will  usually  rely  on  one  or  two  individuals,  bad
decisions that are made at the beginning of a project will
carry a big toll during the entire life of the system. Poor
decisions will be hard to overcome, as a lot of work will be
needed to overhaul these “built from scratch” systemA big
business with large teams will make fewer poor decision and
those mistakes will be found out and fixed faster.

Messy hardware that often breaks easily. Due to the fact that
people  who  build  DIY  implementations  will  go  for  rapid
prototyping and functionality over robustness, sensor and data
logging setups built in this manner will usually lack the
roughness  of  commercial  implementations.  While  a  business
dedicated to data logging wants to build systems with adequate
sensor housing, and durability for transport, with customer
satisfaction in mind, a person who builds this for him or
herself might be ok with having a lot of exposed boards and
cables. Overall DIY setups are therefore less robust, more
likely to break, and more likely to suffer from electrical
issues like poorly grounded circuitry.

Hopefully, the above pros and cons give you a useful idea of
what you’re gaining and losing when you decide to build your
own custom-built data logging system for hydroponics. While
you will usually get much more flexible, lower cost, cohesive
and  personalized  setups  from  custom  building,  this  will
usually come at the cost of higher support costs in time,



lower reliability, lower build quality, and compromises in
quality depending on where your strengths as a builder/coder
are. For small setups, it is usually a no-brainer to go with a
custom setup – because of how much you learn from doing this
and how much you can experiment – while for larger setups
careful consideration of the above cons is important.

Standard  hydroponic
formulations  from  the
scientific literature
When researchers started looking into growing plants without
soil, they started to look for mixtures of nutrients that
could  grow  plants  successfully  so  that  these  formulations
could be used to study other aspects of plant physiology. If
you have a mixture of nutrients that you know grows a plant
without major issues, then you can use that as a base to study
other things, for example how plants react to some exogenous
agent or how changes to temperature or humidity affect the
uptake of certain nutrients (see this paper for a view into
the  history  of  hydroponics  and  standard  solutions).  The
establishment of these standard solutions was one of the great
achievements of botanists during the twentieth century, which
allowed thousands of detailed studies on plants to be carried
out. In this post, we’re going to be talking about these
standard solutions and why they are a great place to start for
anybody seeking to formulate their own nutrients.

ppm
(mg/L)

1 2 3 4 5 6 7 8 9 10 11 12

K 132.93 187.28 241.24 312.79 236.15 237.33 89.54 157.57 261.57 302.23 430.08 312.79

Ca 136.27 36.07 149.09 163.52 200.39 160.31 161.11 120.23 184.76 172.34 220.43 160.31
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Mg 19.69 18.71 37.19 49.34 48.61 24.31 55.90 48.61 49.10 50.55 36.46 34.03

N as
NH4+

0.00 4.90 2.10 18.91 0.00 28.01 19.61 0.00 0.00 0.03 0.01 17.51

Na 0.00 0.23 1.15 0.46 0.00 0.46 0.00 2.07 0.46 0.69 8.74 0.69

Fe 36.86 2.79 4.02 0.00 1.44 1.12 1.12 5.03 1.34 1.90 7.10 0.84

Mn 0.00 0.62 1.23 0.00 0.50 0.11 0.14 0.40 0.62 1.98 2.40 0.55

Cu 0.00 0.06 0.01 0.00 0.02 0.03 0.00 0.02 0.01 0.10 0.04 0.04

Zn 0.00 0.01 0.01 0.00 0.05 0.13 0.13 0.05 0.11 0.10 0.12 0.03

N as
NO3

123.82 77.46 161.50 226.63 210.10 196.09 112.75 112.05 167.80 201.28 241.62 224.11

P 103.45 42.74 64.74 40.89 30.97 61.95 71.24 61.95 30.66 59.78 69.69 38.72

S 25.97 27.90 54.51 65.09 64.13 32.07 96.84 64.13 111.59 67.98 87.22 44.89

Cl 0.00 0.00 0.00 0.00 0.64 1.77 0.00 0.53 0.00 0.00 13.47 0.00

B 0.00 0.28 1.19 0.00 0.46 0.27 0.10 0.40 0.43 0.30 0.34 0.27

Mo 0.00 0.41 0.00 0.00 0.01 0.05 0.00 0.03 0.05 0.19 0.06 0.34

Summary  of  standard  nutrient  formulations  found  in  this
article with the concentrations translated to ppm. The numbers
in the list correspond to the following: 1. Knop, 2. Pennings-
feld  North  Africa,  3.  Pennings-Feld  Carnations,  4.  Gravel
Culture Japan, 5. Arnon and Hoagland 1940, 6. Dennisch R.
Hoagland USA, 7 Shive and Robbins 1942, 8. Hacskalyo 1961, 9.
Steiner 1961, 10. Cooper 1979, 11 Research Centre Soil-less
culture, 12. Naaldwijk cucumber.
One of the best places to find a comparison between these
standard solutions is this paper. In it, the authors explore
the relationships between the different solutions and how they
are similar or diverge. In the table above, you can see a
summary of the elemental nutrient concentrations found in this
paper for the 12 standard solutions they compare (the paper
states them in mmol/L but I have changed them to ppm as these
are more commonly used units in the field nowadays). As you
can see, some of the older solutions miss some elements or
contain much smaller amounts of them – as they were likely
present in the media or other salts as impurities – while more
recent standard solutions do contain all the elements we now
understand are necessary for plant life.
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Figure showing the Ca/Mg/K ratio represented in a three axis
plot. Taken from the paper mentioned above.

Figure showing the N/S/P ratio represented in a three axis
plot. Taken from the paper mentioned above.

It is interesting to note that all of these solutions have
been successfully used to grow plants, so their convergent
aspects might show us some of the basic things that plants
require  for  growth.  As  they  highlight  on  the  paper,  the
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K/Mg/Ca ratio for most of these solutions is rather similar,
as well as the N/S/P ratios. This means that most of these
authors figured out that plants needed pretty specific ratios
of these nutrients and these ratios are sustained with minor
variations through the 12 solutions, developed across a span
of more than 100 years. All the solutions developed from the
1940s have similar final concentrations and their starting pH
is almost always in the 4-5 range, due to the presence of acid
phosphate salts like monopotassium phosphate.

Nonetheless, there are several things that improved in the
solutions as a function of time. The first is the inclusion of
higher  concentrations  of  all  micronutrients  with  time,  as
macronutrient salt quality increased, the media sources became
more inert and the need to add them to avoid deficiencies
became  apparent.  The  need  to  chelate  micronutrients  also
became clear with time, as solutions starting with Hoagland’s
solution in the 1940s started using EDTA to chelate iron, to
alleviate  the  problem  of  iron  phosphate  precipitation  in
hydroponic  solutions.  This  is  clearly  shown  in  the  table
below, where the authors show how the first three solutions
had almost or all of their Fe precipitate out, while the
newest solutions, like Cooper’s developed in 1979, had less
than 5.5% of its Fe precipitated.



This table shows the precipitated Fe and chelated portions of
the micro nutrients in all the standard solutions.

The natural question when reading about standard solutions is:
which one is the best one to use? Sadly, I don’t think there’s
a simple answer. There have been multiple studies comparing
standard solutions (see this one for an example). What ends up
happening  most  of  the  time  is  that,  while  most  of  the
solutions manage to grow healthy crops, one of the solutions
happens to be more fit to the idiosyncrasies of the study
because its conditions are better aligned with those that the
authors developed the solutions under. A study revealing a
solution to be better than another to grow plants under a
given set of conditions does not imply that this solution will
be the best one for all plants under all conditions. For this
reason, the optimization of nutrient solutions to particular
conditions using tissue analysis is still pursued in order to
maximize yields.

My  advice  would  be  to  view  the  above  solutions  as  well
researched starting points for your hydroponic crops. These
solutions, especially the ones developed after 1940, will do a
good basic job growing your plants. If you’re interested in

https://scienceinhydroponics.com/wp-content/uploads/2021/03/image-2.png
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1983.tb04863.x


making your own solutions, starting with a solution like the
Hoagland, Steiner, or Cooper solutions is a great way to begin
making your own nutrients. Once you have a basic standard
solution working for you, you can then tweak it to maximize
your yield and improve your crop’s quality.

The  stability  of  metal
chelates
When you get introduced to hydroponics and nutrient solution
chemistry,  one  of  the  first  concepts  that  you  learn  is
chelation. A chelate is a molecule formed by a metallic ion
and a chelating agent – which is also referred to as a ligand
– where the metal ion is wrapped around very tightly by this
ligand. The job of the chelating agent is to keep the heavy
metal ion shielded from the environment, allowing it to exist
in solution without forming potentially insoluble compounds
that will take it out of the nutrient solution. However, these
chelates can be unstable or too stable, both of which can
hinder the availability of the nutrient to plants. In this
post, we’re going to talk about what determines the stability
of a metal chelate and how you can know if a given chelate
will be able to fulfill its job in a hydroponic environment.
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A  simplified  view  of  the  chemical  equilibrium  formed  |M|
refers to the concentration of the free metallic ion, |L| the
ligand  concentration  and  |ML|  the  chelate  concentration.
Charges are omitted for simplicity.

Since chelates are formed by the reaction of a metallic ion –
most  commonly  a  cation  –  which  a  ligand,  a  chemical
equilibrium is established between the free metallic ion, the
ligand,  and  the  chelate.  Every  second,  there  are  lots  of
chelate molecules being formed from reactions between metallic
ions and ligands, and free metallic ions and ligands are being
formed from the disassembly of the chelate. The process is in
equilibrium when the rates of assembly and disassembly are the
same. The equilibrium constant – also known as the stability
constant or Kb – tells us how displaced this equilibrium is
towards the product (in this case the chelate). When the Kb
value  is  large,  the  concentration  of  the  chelate  at
equilibrium  is  very  large,  while  when  Kb  is  small,  the
opposite is true. Since these numbers are usually very large
for chelates, we express them as pKb which is -Log(Kb). These
constants  depend  on  temperature,  but  their  values  are
independent of other chemical reactions. However, things like
pH can affect the concentration of ligand or metal cation,
which  can  affect  the  concentration  of  chelate,  since  the
equilibrium constant’s value remains the same.

 Al(III) Ba Ca Co(II) Cu Fe(II) Fe(III) Hg Mg Mn Ni Sr Zn

 

Acetic acid  0.39 0.53 2.24    3.7d 0.51  0.74 0.43 1.03

Adenine              

Adipic acid  1.92 2.19  3.35         

ADP  2.36 2.82 3.68 5.9    3.11 3.54 4.5 2.5 4.28

Alanine  0.8 1.24 4.82 8.18     3.24 5.96 0.73 5.16

b-Alanine     7.13      4.63  4

Albumin   2.2           

Arginine      3.2    2    

Ascorbic acid   0.19         0.35  

Asparagine   0         0.43  

Aspartic acid  1.14 1.16 5.9 8.57    2.43 3.74 7.12 1.48 2.9

ATP  3.29 3.6 4.62 6.13    4 3.98 5.02 3.03 4.25

Benzoic acid     1.6      0.9  0.9

n-Butyric acid  0.31 0.51  2.14    0.53   0.36 1



Casein   2.23           

Citraconic acid   1.3         1.3  

Citric acid  2.3 3.5 4.4 6.1 3.2 11.85 10.9d 2.8 3.2 4.8 2.8 4.5

Cysteine    9.3 19.2 6.2  14.4d < 4 4.1 10.4  9.8

Dehydracetic acid     5.6      4.1   

Desferri-ferrichrysin       29.9       

Desferri-ferrichrome       29       

Desferri-ferrioxamin E    11.8 13.7  32.5    12.2  12

3,4-Dihydroxybenzoic acid   3.71 7.96 12.8    5.67 7.22 8.27  8.91

Dimethylglyoxime     11.9      14.6  7.7

O,O-Dimethylpurpurogallin   4.5 6.6 9.2    4.9  6.7  6.8

EDTA 16.13 7.78 10.7 16.21 18.8 14.3 25.7 21.5d 8.69 13.6 18.6 8.63 16.5

Formic acid  0.6 0.8  1.98  3.1     0.66 0.6

Fumaric acid  1.59 2  2.51     0.99  0.54  

Globulin   2.32           

Gluconic acid  0.95 1.21  18.3    0.7   1 1.7

Glutamic acid  1.28 1.43 5.06 7.85 4.6   1.9 3.3 5.9 1.37 5.45

Glutaric acid  2.04 1.06  2.4    1.08   0.6 1.6

Glyceric acid  0.80b 1.18      0.86   0.89 1.8

Glycine  0.77 1.43 5.23 8.22 4.3 10 10.3 3.45 3.2 6.1 0.91 5.16

Glycolic acid  0.66 1.11 1.6 2.81  4.7  0.92   0.8 1.92

Glycylglycine   1.24 3 6.7 2.62 9.1  1.34 2.19 4.18  3.91

Glycylsarcosine    3.91 6.5     2.29 4.44   

Guanosine    3.2 6 4.3   3  3.8  4.6

Histamine    5.16 9.55 9.6 3.72    6.88  5.96

Histidine    7.3 10.6 5.89 4   3.58 8.69  6.63

b-Hydroxybutyric  0.43 0.6      0.6   0.47 1.06

3-Hydroxyflavone    9.91 13.2        9.7

Inosine    2.6 5 3     3.3   

Inosine triphosphate   3.76 4.74     4.04 4.57    

Iron-free ferrichrome       24.6       

Isovaleric acid   0.2  2.08         

Itaconic acid   1.2  2.8      1.8 0.96 1.9

Kojic acid 7.7  2.5 7.11 6.6  9.2  3  7.4  4.9

Lactic acid  0.55 1.07 1.89 3.02  6.4  0.93 1.19 2.21 0.7 1.86

Leucine    4.49 7 3.42 9.9   2.15 5.58  4.92

Lysine       4.5   2.18    

Maleic acid  2.26 2.43  3.9     1.68 2 1.1 2

Malic acid  1.3 1.8  3.4    1.55 2.24  1.45 2.8

Methionine      3.24 9.1    5.77  4.38

Methylsalicylate     5.9  9.77       

NTA >10 4.82 6.41 10.6 12.7 8.84 15.87  5.41 7.44 11.3 4.98 10.45

Orotic acid    6.39c       6.82  6.42

Ornithine    4.02 6.9 3.09 8.7   <2 4.85  4.1

Oxalic acid 7.26 2.31 3 4.7 6.3 >4.7 9.4  2.55 3.9 5.16 2.54 4.9

b-Phenylalanine     7.74 3.26 8.9       

Pimelic acid          1.08    

Pivalic acid   0.55  2.19         



Polyphosphate   3  3.5 3   3.2 5.5 3  2.5

Proline      4.07 10   3.34    

Propionic acid  0.34 0.5  2.2  3.45  0.54   0.43 1.01

Purine     6.9      4.88   

Pyrophosphate   5  6.7  22.2  5.7  5.8  8.7

Pyruvic acid   0.8  2.2         

Riboflavin    3.9 <6     3.4 4.1  <4

Salicylaldehyde    4.67 7.4 4.22 8.7  3.69 3.73 5.22  4.5

Salicylic acid 14.11   6.72 10.6 6.55 16.35  4.7 2.7 6.95  6.85

Sarcosine    4.34 7.83 3.52 9.7    5.41   

Serine   1.43   3.43 9.2    5.44   

Succinic acid  1.57 1.2 2.08 3.3  7.49  1.2 2.11 2.36 0.9 1.78

( + )-Tartaric acid  1.95 1.8  3.2  7.49  1.36  3.78 1.94 2.68

Tetrametaphosphate  4.9 5.2  3.18    5.17  4.95 2.8  

Threonine      3.3 8.6       

Trimetaphosphate   2.5  1.55    1.11 3.57 3.22 1.95  

Triphosphate  6.3 6.5  9.8    5.8   3.8 9.7

Tryptophan       9       

Uridine diphosphate         3.17     

Uridine triphosphate   3.71 4.55     4.02 4.78    

n-Valeric acid  0.2 0.3  2.12         

Valine     7.92 3.39 9.6   2.84 5.37  5

Xanthosine    2.8 3.4 <2     3  2.4

This table was originally present in a website that no longer
exists. The data is taken from the NIST reference of heavy
metal complexes.
The table above shows you the pKb values for different metal
ions and different ligands or chelating agents. Since the pKb
scale is logarithmic, a difference of 1 indicates an order of
magnitude  higher  stability.  You  can  also  find  additional
references to other stability constants in this link. These
constants allow us to predict which chelates will be formed if
different metallic cations and ligands are present. Let’s say
we have a solution that contains Ca2+ and Fe3+ and we add a
small amount of sodium citrate, what will happen? Since the
constant for Ca2+ is 3.5 but that of Fe3+ is 11.85, citrate
will chelate around 1 billion Fe3+ ions for every Ca2+ ion it
chelates. In practice, this means that all the Fe3+ that can
be chelated will be, while Ca2+ will remain as a free metallic

ion. However, if we have Fe2+ instead of Fe3+ then Fe2+ has a

constant of only 3.2, which means that one molecule of Fe2+

https://data.nist.gov/od/id/mds2-2154
https://data.nist.gov/od/id/mds2-2154


will be chelated for every 3 of Ca2+, meaning we will have
around 25% of all the chelate formed as a chelate formed by

Fe2+ and 75% as a chelate formed by Ca2+.

We can see in this manner how chelating only one heavy metal
can lead to problems. Imagine that you purchase Iron EDTA and
add it to your nutrient solution, but you have added Manganese
from Manganese sulfate. Upon addition, the FeEDTA chelate will

disassemble to generate as much Fe2+ and free EDTA as dictated
by the equilibrium constant and the free EDTA will then get
into equilibria with all the other heavy metals, since the
constant with Mn is 13.6 and that of Fe is 14.3 the ligand
will redistribute itself so that it complies with all the

chemical equilibria present. This means that for every 7 Fe2+

cations that are chelated we will have around 1 Mn2+ containing
chelate, so you will lose around 14% of the chelated Fe in

order  to  chelate  free  Manganese.  That  free  Fe2+  will  be
unstable and precipitate out, which will shift the equilibrium
and cause us to lose more of the Fe chelate. This is how
competing equilibria can lead to the slow but sure depletion
of available cations in solution.

With the above references and charts, you should now be able
to look into any chelating agent you want to use and determine
how good of a choice it is for your solution and what is
likely to happen once you put that chelate in. The ligand will
chelate  different  metals  in  order  to  comply  with  all  the
equilibrium constants, so it is up to you to add enough so
that  all  heavy  metals  are  satisfied  or  add  ligands  whose
affinity for a given ion is so high that the others are just
unable  to  compete  for  it,  almost  regardless  of  their
concentration.



Six things to look for in a
Hydroponic  sensor  data
logging system
Data is key. It will help you obtain high yields and improve
with each additional crop cycle. Having sensor measurements
not only allows you to diagnose your crop at any given point
in time but also allows you to go back and figure out what
might have happened if something went wrong. With all the
commercial offerings now becoming available, it is starting to
become harder and harder to evaluate which data logging system
might be ideal for you. In this post, I seek to share with you
5 things that I always look for when evaluating data logging
systems for a greenhouse or grow room. These are all things
that will enable you to store sensor data adequately and take
full advantage of it, ensuring you’re not handy capped by a
poor starting choice.

Sensor compatibility. One of the first things that I look for
is which sensors I can add and what restrictions I might have
on sensors that are added to the system. I like to have
systems where I can connect any 3-5V analog sensor I want. I
also  want  to  be  able  to  connect  sensors  that  use  common
protocols, like i2c sensors. I also like to know that for
things like pH and EC, the boards have standard plugs I can
connect to, to make sure I can replace the electrodes given to
me by the company with others if I wish to do so. Freedom in
sensor compatibility and in the ability to replace sensors
with sensors from outside the company are both a must for me.

Expandability. Many of the commercially available data logging
platforms are very restricted and can often only accommodate a
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very small number of sensors. Whenever you’re looking for a
data logging solution that will need to be deployed on a
medium/large  scale,  it  is  important  to  consider  how  this
implementation can expand, and how painful it would be to make
that expansion. Being able to easily add/remove sensors to a
platform is key to having a flexible and robust data logging
solution.

Not cloud reliant. It is very important for me to be able to
use the system, regardless of whether the computers are online
or not, and to have all the data that I register logged
locally in some manner. Systems where an internet connection
is needed for data logging or where data is not stored locally
are both big show stoppers when it comes to evaluating a data
logging system. There is nothing wrong with having data backed
up to the cloud – this is indeed very desirable – but I want
to ensure that I have a local copy of my data that can I
always rely on and that logging of data won’t be stopped
because there is some internet connection issue. Also bear in
mind that if your sensors are cloud reliant you will be left
without any sort of data logging system if the company goes
under and those servers cease to exist.

Connectivity  of  sensors  is  robust.  In  many  of  the  more
trendier new systems sensor connectivity is wireless. This can
be perfectly fine if it is built robustly enough, but it is



often the case that connections based on WiFi will tend to
fail under environments that are filled with electromagnetic
noise, such as when you have a lot of HPS ballasts. It is
therefore  important  to  consider  that  if  you  have  such  an
environment,  having  most  of  your  sensors  connected  using
cables, or using a wireless implementation robust to this type
of noise is necessary.

Have a robust API to directly access your data. Since I do a
lot of data analyses using the data from hydroponics crops, I
find it very crippling to be limited by some web interface
that only allows me to look at data in some very limited ways.
I want any data logging system I use to allow me to use an API
to get direct access to the data so that I can implement a
data structure and analysis the way I see fit. Having your
data available through a robust API will allow you to expand
the usage of your data significantly and it will also ensure
you can backup your data or structure the database in whatever
way you see fit. An example of this is sensor calibration
logging  and  comparisons,  while  commercial  platforms  almost
never have this functionality, having an API allows me to
download the data and compare sensor readings between each
other to figure out if some sensors have lost calibration or
make sure to schedule their calibration if they haven’t been
calibrated for a long time.

Ability to repair. When making a data logging choice, we are
making a bet on a particular company to continue existing and
supporting their products in the long term. However, this is
often not the case and we do not want to be left with a
completely obsolete system if a company goes under and ceases
to support the product they made. I always like to ensure that
the systems that are being bought can continue working if the
company goes under and that there is a realistic ability to
find parts and replace sections of those products that might
fail in the future if this were to be the case. Open source
products are the most ideal because of this fact.



These are some of my top six priorities whenever I evaluate a
commercial  data  logging  solution  for  deployment.  From  the
above, not being cloud reliant and having a robust API are the
most important, while sensor compatibility can be ignored to
an extent if the system is only being deployed for a very
specific need (for which the sensors provided/available are
just fine). Which of the above you give the most priority to
depends on how much money you’re going to be investing and how
big and robust you want the implementation to be.

Differences  between  labels
and actual composition values
in  commercial  hydroponic
fertilizers
Whenever I am hired to duplicate a company’s fertilizer regime
based on commercial products, I always emphasize that I cannot
use the labels of the products as a reference because of how
misleading these labels can be. A fertilizer company only
needs  to  tell  you  the  minimum  amount  of  each  element  it
guarantees there is in the product, but it does not have to
tell you the exact amount. For example, a company might tell
you their fertilizer is 2% N, while it is in reality 3%. If
you tried to reproduce the formulation by what’s on the label
you would end up with substantially less N, which would make
your mix perform very differently. This is why lab analysis of
the actual bottles is necessary to determine what needs to be
done to reproduce the formulations.

https://scienceinhydroponics.com/2021/02/differences-between-labels-and-actual-composition-values-in-commercial-hydroponic-fertilizers.html
https://scienceinhydroponics.com/2021/02/differences-between-labels-and-actual-composition-values-in-commercial-hydroponic-fertilizers.html
https://scienceinhydroponics.com/2021/02/differences-between-labels-and-actual-composition-values-in-commercial-hydroponic-fertilizers.html
https://scienceinhydroponics.com/2021/02/differences-between-labels-and-actual-composition-values-in-commercial-hydroponic-fertilizers.html


Average deviation from the reported composition on the label
compared with lab analysis.

How bad is this problem though? Are companies just under-
reporting by 1-5% in order to ensure they are always compliant
with  the  minimum  guaranteed  amount  accounting  for
manufacturing errors or are they underreporting substantially
in order to ensure all reverse engineering attempts based on
the labels fail miserably? I have a lot of information about
this from my experience with customers – which is why I know
the problem is pretty bad – but I am not able to publicly
share any of it, as these lab tests are under non-disclosure
agreements with them. However, I recently found a website from
the Oregon government (see here), where they share all the
chemical analysis of fertilizers they have done in the past as
well as whatever is claimed on labels.

The Oregon database is available in pdf form, reason why I had
to develop a couple of custom programming tools to process all
the information and put it into a readable database. So far I

https://scienceinhydroponics.com/wp-content/uploads/2021/02/download-24.png
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have only processed the fertilizers that were registered in
2015, but I am going to process all the fertilizers available
in their database up until 2018 (the last year when this
report was uploaded). However, you can already see patterns
emerging for just the 2015 data. That year there were 245
fertilizers tested, from which 213 contained N, P, K, Ca, S or
Mg. If we compare the lab results for these elements with the
results from the lab analysis, we can calculate the average
deviation for them, which you can see above. As you can see,
companies will include, on average, 20%+ of what the labels
say they contain. This is way more of a deviation than what
you would expect to cover manufacturing variations (which are
expected to be <10% in a well-designed process) so this is
definitely an effort to prevent reverse engineering.

Median divergence between compositions derived from labels and

https://scienceinhydroponics.com/wp-content/uploads/2021/02/download-26.png


lab analyses.

Boxplot of the divergences between compositions derived from
labels and lab analyses.

Furthermore, the deviations are by no means homogeneous in the
database. The above graphs showing the box plot and median
deviation values, show us that most people will actually be
deviated by less than 5% from their label requirements, but
others will be very largely deviated, with errors that can be
in the 100%+ deviation from their reported concentration. In
many cases, companies also have negative deviations, which
implies that the variance of their manufacturing process was
either  unaccounted  for  or  there  was  a  big  issue  in  the
manufacturing process (for example they forgot to add the
chemical containing the element). These people would be in
violation of the guaranteed analysis rules and would be fined
and their product registrations could be removed.

https://scienceinhydroponics.com/wp-content/uploads/2021/02/image-17.png


With this information, we can say that most people try to
report things within what would be considered reasonable if
the label is to remain accurate (deviations in the 1-5% range)
to account for their manufacturing issues but many companies
will choose to drift heavily for this and report values that
are  completely  misleading  relative  to  the  labels.  These
companies are often the ones that are most widely used as they
are  the  ones  who  want  to  protect  themselves  from  reverse
engineering most aggressively.

Take  for  example  General  Hydroponics  (GH).  Their  FloraGro
product is registered with an available phosphate of 1%, while
the  actual  value  in  the  product  is  1.3%,  this  is  a  30%
deviation, far above the median of the industry. They will
also not just underreport everything by the same amount –
because then your formulation would perfectly match when you
matched their target EC – but they will heavily underreport
some  elements  and  be  accurate  for  others.  In  this  same
Floragro product, the K2O is labeled as 6% and the lab analysis
is 5.9%, meaning that they reported the value of K pretty
accurately. However, by underreporting some but not others,
they guarantee that you will skew your elemental ratios by a
big margin if you try to reverse engineer the label, which
will make your nutrients work very differently compared to
their bottles.

As  you  can  see,  you  just  cannot  trust  fertilizer  labels.
Although most of the smaller companies will seek to provide
accurate labels within what is possible due to manufacturing
differences, big companies will often engineer their reporting
to make it as hard as possible for reverse engineering of the
labels to be an effective tactic to copy them. If you want to
ever copy a commercial nutrient formulation, make sure you
perform a lab analysis so that you know what you will be
copying and never, ever, rely solely on the labels. I will
continue  working  on  this  dataset,  adding  the  remaining
fertilizers,  and  I  will  expand  my  analyses  to  include



micronutrients, which are covered by Oregon government tests.

Nutrient availability and pH:
Are  those  charts  really
accurate?
When growing plants, either in soil or hydroponically, we are
interested in giving them the best possible conditions for
nutrient absorption. If you have ever searched for information
about plant nutrition and pH, you might remember finding a lot
of charts showing the nutrient availability as a function of
the pH – as shown in the image below – however, you might have
also noticed that most of these images do not have an apparent
source. Where does this information on pH availability come
from? What experimental evidence was used to derive these
graphs? Should we trust it? In this post, we are going to look
at where these “nutrient availability” charts come from and
whether or not we should use them when working in hydroponic
crops.
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A google search in 2021 showing all the different versions of
the same nutrient availability plots.

Information about the above charts is not easy to come by.
People have incessantly copied these charts in media, in peer
reviewed papers, in journals, in websites, etc. Those who
cite, usually cite each other, creating circular references
that made the finding of the original source quite difficult.
However, after some arduous searching, I was able to finally
find the first publication with a chart of this type. It is
this white paper from 1942 by Emil Truog of the University of
Wisconsin.  The  paper  is  titled  “The  Liming  of  Soils”  and
describes Truog’s review of the “state of the art” in regards
to  the  liming  of  soils  in  the  United  States  and  the
differences in nutrient availability that different pH levels

https://scienceinhydroponics.com/wp-content/uploads/2021/02/image-12.png
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– as set by lime – can cause.

The paper is not based primordially on judicious experiments
surrounding nutrient availability but on Truog’s experience
with limed soils and the chemistry that was known at the time.
He acknowledges these limitations explicitly in the paper as
follows:

I also emphasize that the chart is a generalized diagram.
Because adequate and precise data relating to certain aspects
of  the  subject  are  still  lacking,  I  had  to  make  some
assumptions in its preparation and so there are undoubtedly
some inaccuracies in it. There will be cases that do not
conform  to  the  diagram  because  of  the  inaccuracies,  or
special and peculiar conditions that are involved, e. g.,
conditions that are associated with orchard crops.

“The liming of soils” by Emil Truog

It is therefore quite surprising that we continue to use this
diagram, even though there have been more than 80 years of
research on the subject and we now know significantly more
about the chemistry of the matter. Furthermore, this diagram
has been extended to use in hydroponics, where it has some
very important inaccuracies. For example, Truog’s decision to
lower nitrogen availability as a function of pH below 6 is not
based on an inability of plants to absorb nitrogen when the pH
drops, but on the observations done in soil that showed that
below  this  value,  the  bacteria  present  in  soil  could  not
effectively convert organic nitrogen into nitric nitrogen, the
main  source  of  nitrogen  that  crops  can  assimilate.  In
hydroponics,  where  nitrate  is  provided  in  its  pure  form,
nitrate availability does not drop as the pH of the solution
goes down.

Several other such assumptions are present in his diagram.
Since the changes in pH he observed are associated with lime
content, the drops in availability are as much a consequence



of pH increase as they are of increases in the concentration
of  both  calcium  and  carbonates  in  the  media.  This
significantly  affects  P  availability,  which  drops
substantially as the increase in pH, coupled with the increase
in Ca concentration, causes significant precipitations of Ca
phosphates. His diagram also ignores key developments in the
area of heavy metal chelates, where the absorption of heavy
metal ions can be unhindered by increases of pH due to the use
of strong chelating agents.

The original pH availability chart as published by Truoug in
the 1940s. It has been copied without barely any modification
for the past 80 years.

Diagram from the 1935 paper by N.A. Pettinger
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Reading  further  into  Truog’s  paper,  I  found  out  that  his
diagram is actually an extension of a diagram that was created
almost  10  years  before,  in  1935,  by  N.  A.  Pettinger,  an
associate agronomist at the Virginia Agricultural Experiment
station. You can read this white paper here. In a similar
fashion,  Pettinger  created  a  diagram  that  summed  his
experiences with different nutrients in soils at different pH
values, where the pH was mainly increased or decreased by the
presence  or  absence  of  lime.  You  can  see  big  differences
between  both  diagrams,  while  Truog  includes  all  elements
required by plants, Pettinger only includes the most highly
used nutrients, leaving Zn, B, Mo, and Cu out of the picture.
Pettinger  also  has  substantially  different  availability
profiles for Mg and Fe.

Although these diagrams are both great contributions to the
field of agronomy and have been used extensively for the past
80 years, I believe it is time that we incorporate within
these diagrams a lot of the knowledge that we have gained
since the 1950s. I believe we can create a chart that is
specific to nutrient availability in hydroponics, perhaps even
charts  that  show  availability  profiles  as  a  function  of
different media. We have a lot of experimental data on the
subject, product of research during almost a century, so I
believe I will raise up to the challenge and give it my best
shot. Together, we can create a great evidence-based chart
that reflects a much more current understanding of nutrient
availability as a function of pH.

Understanding  Calcium
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deficiency issues in plants
Calcium is one of the most difficult elements to properly
supply to plants as its absorption is tightly linked to both
chemical  and  environmental  factors.  It  is  very  easy  for
growers to suffer from calcium-related problems, especially
those  who  are  growing  under  highly  productive  conditions.
Issues such as bitter pit in apples, black heart in celery,
blossom end rot in tomato, and inner leaf tip burn in lettuce,
have all been associated with low levels of calcium in the
affected tissues. In this post, we are going to discuss why
this happens, how it is different for different plants, and
which strategies we can use to fix the issue and get all the
calcium  needed  into  our  plants’  tissue.  Most  of  the
information  on  this  post  is  based  on  these  two  published
reviews (1, 2, 3).

Problems with Ca absorption rarely happen because there is not
enough  Calcium  available  to  a  plant’s  root  system.  In
hydroponic  crops,  these  issues  happen  when  ample  Ca  is
available to plant root systems and can present themselves
even when apparently excess Ca is present in the nutrient
solution. Concentrations of 120-200 ppm of Ca are typically
found in hydroponic solutions and we can still see cases where
nutrient Ca-related problems emerge. This is because issues
with Ca are mostly linked to the transport of this element
from roots to tissues, which is an issue that is rarely caused
by  the  concentration  of  Ca  available  to  the  plants.  Most
commonly these problems are caused by a plant that is growing
under conditions that are very favorable and Ca transport
fails to keep up with other, more mobile elements. As the
plant fails to get enough Ca to a specific growing point, that
tissue will face a strong localized Ca deficiency and will
die.
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Calcium issues in different plants. Taken from this review.

When looking into a Ca problem and how to fix it, we first
need to understand which plant organ is lacking proper Calcium
uptake. In tomato plants, for example, blossom end rot (BER)
appears when Ca fails to reach a sink organ – the fruit –
while in lettuce, inner tip burn develops because Ca is unable
to reach a fast-growing yet photosynthetically active part of
the  plant.  Since  Calcium  transport  can  be  increased  by
increasing transpiration, we might think that decreasing the
relative  humidity  (RH)  might  reduce  BER  but  this  in  fact
increases  it,  because  transpiration  increases  faster  in
leaves, than it does in the fruit. In this case, solving the
problem involves balancing Ca transport so that it reaches the
fruit instead of the leaves. Pruning of excessive leaf tissue,
lowering N to reduce vegetative growth, and increasing RH –
especially  at  night  –  can  in  fact  help  under  these
circumstances, where Ca deficiency develops in sink organs.
Reducing  ammonium  as  much  as  possible  can  also  help,  as
ammonium can also antagonize calcium absorption due to its
cationic nature.

In  plants  like  cabbages  and  lettuce,  a  different  picture
emerges. In this case, increasing the RH leads to worse tip
burn symptoms, and decreasing it significantly reduces tip
burn,  as  Ca  transport  is  increased  by  the  increased  leaf
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transpiration.  This  can  be  a  viable  strategy  if  the
temperature is not too high. Under high temperatures, reducing
RH leads to too much water stress, which causes other problems
for  the  plants.  In  these  cases,  a  preferred  technique  to
reduce  tip  burn  is  to  increase  air  circulation,  which
decreases both the RH around leaf tissue and the temperature
of  the  plant  due  to  the  wind-chilling  effect,  this  can
increase transpiration rates without overly stressing plants.

Taken from this review.

Since in most cases these Ca issues are associated with fast
growth, most measures that reduce growth will tend to reduce
the severity of the Ca symptoms. Reducing the EC of solutions,
reducing temperatures, and decreasing light intensity are some
of  the  most  popular  mechanisms  to  reduce  Ca  problems  by
reducing  plant  productivity.  These  might  be  the  most
economical solutions – for example, if artificial lights are
used – but it might not be favored by many growers due to the
fact  that  it  requires  a  sacrifice  in  potential  yields.  A
potential  way  to  attack  Ca  issues  through  growth  control
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without reducing yields is to use growth regulators in order
to  suppress  vegetative  growth.  Synthetic  and  natural
gibberellin inhibitors are both effective at this task.

A common strategy to tackle these Ca issues is to perform
foliar  sprays  to  correct  the  deficiency.  Weekly,  calcium
nitrate or calcium chloride foliar sprays can help alleviate
symptoms of tip burn and black heart. Spraying plants from a
young age, to ensure they always have Ca in their growing
tips, is key. When performing these sprays, primordially make
sure all growing tips are fully covered, as Ca sprayed on old
tissue  won’t  really  help  the  plant,  as  Ca  cannot  be
transported  from  old  to  young  leaves.

Disinfection  of  nutrient
solutions  in  recirculating
hydroponic systems
Plant  growing  systems  that  recirculate  nutrients  are  more
efficient in terms of fertilizer and water usage than their
run-to-waste  counter-parts.  However,  the  constant
recirculation  of  the  nutrient  solution  creates  a  great
opportunity for pathogens and algae to flourish and colonize
entire crops, with often devastating results. In this post, we
are  going  to  discuss  the  different  alternatives  that  are
available for disinfection in recirculating crops, which ones
offer us the best protection, and what we need to do in order
to use them effectively. I am going to describe the advantages
and disadvantages of each one so that you can take this into
account when choosing a solution for your hydroponic crop.

Disinfection  of  recirculating  nutrient  solutions  has  been
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described extensively in the scientific literature, the papers
in the following links (1,2,3,4) offer a good review of such
techniques  and  the  experimental  results  behind  them.  The
discussion  within  this  post  makes  use  of  the  information
within these papers, as well as my personal experience while
working with growers all over the world during the past 10
years.

A slow sand filtration system will be effective at filtering
most fungal and bacterial spores, but is slow. Image taken
from here.

In order to kill the pathogens within a hydroponic solution,
we can use chemical or non-chemical methods. Chemical methods
add something to the nutrient solution that reacts with the
molecules that make up pathogens, killing them in the process,
while non-chemical methods will add energy to the nutrient
solution in some form or filter the solution in order to
eliminate undesired microbe populations. Chemical methods will
often affect plants – since the chemicals are carried away
with the nutrient solution – and require constant adjustments
since  the  levels  of  these  chemicals  within  the  nutrient
solutions need to be controlled quite carefully.

Chemical  methods  include  sodium  hypochlorite,  hydrogen
peroxide,  and  ozone  additions.  From  these  choices,  both
hypochlorite  and  hydrogen  peroxide  have  poor  disinfection
performance at the concentrations tolerated by plants and are
hard to maintain at the desired concentrations through an
entire  crop  cycle  without  ill  effects.  Ozone  offers  good
disinfection  capabilities  but  requires  additional  carbon
filtration  steps  after  injection  in  order  to  ensure  its
removal from the nutrient solution before it contacts plant
roots  (since  it  is  very  poorly  tolerated  by  plants).
Additionally, ozone sterilization requires ozone sensors to be
installed  in  the  facility  in  order  for  people  to  avoid
exposure to high levels of this gas, which is bad for human
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health. In all of these cases, dosages can be monitored and
controlled to a decent level using ORP meters, although solely
relying on ORP sensors can be a bad idea for substances like
hypochlorite as the accumulation of Na and Cl can also be
problematic.

The most popular non-chemical methods for disinfection are
heat treatment, UV radiation, and slow sand filtration. Slow
sand filtration can successfully reduce microbe populations
for fungi and bacteria but the slow nature of the process
makes it an inadequate choice for larger facilities (>1 ha).
Heat treatment of solutions is very effective at disinfection
but is energetically intensive as it requires heating and
subsequent  cooling  of  nutrient  solutions.  For  large
facilities,  UV  sterilization  offers  the  best  compromise
between cost and disinfection as it requires little energy, is
easy to scale, and provides effective disinfection against a
wide variety of pathogens if the dosage is high enough. It is
however  important  to  note  that  some  UV  lamps  will  also
generate  ozone  in  solution,  which  will  require  carbon
filtration  in  order  to  eliminate  the  ill  effects  of  this
chemical. If this wants to be avoided, then lamps that are
specifically designed to avoid ozone generation need to be
used.



Loss in soluble Fe as a function of UV radiation time. Taken
from here. Note that this is irradiation time -not nutrient
solution life – in a normal crop it will take 10x the time to
accumulate the level of radiation since solution is not under
radiation for most of the time.

If you want to use UV sterilization, you should carefully
consider the power of the lamps and the flow rate needs in
order to ensure that you have adequate sterilization. Most in-
line UV filters will give you a flow rate in GPH at which they
consider the dosage adequate for disinfection, as a rule of
thumb you should be below 50% of this value in order to ensure
that the solution is adequately disinfected as some pathogens
will require radiation doses significantly higher than others.
You can also add many of these UV filters in parallel in order
to  get  to  the  GPH  measurement  required  by  your  crop.  UV
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sterilization also has a significant effect on all microbe
populations in the environment (5) so consider that you will
need to inoculate with more beneficial microbes if you want to
sustain microbe populations in the plants’ rhizosphere.

With all these said, the last point to consider is that both
chemical and UV sterilization methods will tend to destroy
organic molecules in the nutrient solution, which means heavy
metal  chelates  will  be  destroyed  continuously,  causing
precipitation of heavy metals within the nutrient solution as
oxides or phosphates. As a rule of thumb, any grower that uses
any method that is expected to destroy chelates should add
more heavy metals routinely in order to replace those that are
lost. To calibrate these replacements, Fe should be measured
using lab analysis once every 2 days for a week, in order to
see how much Fe is depleted by the UV process. Some people
have  tried  using  other  types  of  Fe  chelates,  such  as
lignosulfates, in order to alleviate this issue as well (6).

Optimal  air  speed  in  a
hydroponic crop
Wind speed is a particularly important, yet often overlooked
variable in hydroponic crops. While growers in greenhouses
will  pay  close  attention  to  overall  gas  exchange
characteristics (how much air exits and enters a greenhouse)
the speed of air around plant canopy is commonly not measured
or optimized to maximize plant growth. In this post we will
talk about why air speed is so important, why it needs to be
measured around the canopy, and what you should be aiming to
achieve within your hydroponic greenhouse or grow room.
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Plants at higher wind speeds

The airflow around a plant will completely change the plant’s
environment. As air flows around the plant it will carry away
oxygen and water and will replenish carbon dioxide. Besides
this, the moving air will also dramatically increase heat
transfer  due  to  convection,  effectively  cooling  the  plant
substantially (this is known as wind-chill) (1). Without any
air movement, the plant will saturate the air immediately
around it with oxygen and water and deplete it of carbon
dioxide during the day, relying solely on diffusion across
this depleted layer in order to get additional carbon dioxide.
This will heavily limit the plant’s ability to photosynthesize
and will generally cause plants to be stunted and with a
higher propensity for fungal/bacterial disease (since there is
a very high relative humidity layer adjacent to the leaves).

As airflow increases, so will the plant’s metabolism. This
will happen up to a point where the effects of wind chill or
mechanical stress due to the air movement become too high. At
low  relative  humidity  values,  high  wind  speeds  will  also
pressure  the  plant  to  increase  water  transpiration
substantially as the flowing dry air will strip the plant of
humidity  more  efficiently.  Due  to  this  reason,  optimal
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relative humidity will tend to be higher as airspeeds at the
canopy increase. It is often quite common that to achieve
optimal VPD – which often requires high humidity values at
high  temperatures  –  airspeed  around  plants  needs  to  be
increased to avoid fungal issues.

The airspeed around the canopy can be bad even if the in/out
exchange  characteristics  of  a  room  are  optimal.  This  is
because the flow of air into or out of a room says nothing
about how the air is circulating through that room. Since air
is a gas, it will go through paths of least resistance and
will try to avoid the canopy – a very prominent obstacle – if
it is allowed to. For this reason, intake/outtake structures
that force air to go through the canopy and fan setups that
direct air straight at the canopy structure are going to be
significantly  more  effective  at  generating  proper  airflow.
Since airspeeds around the canopy are going to be quite low
(0-1m/s),  it  is  not  possible  to  measure  these  speeds
accurately  with  regular  fan-base  anemometers,  a  hot  wire
anemometer will be required to make these readings. These
devices will allow you to measure wind speeds that are quite
low, with an accuracy of +/-0.1m/s.
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A hot wire anemometer that can be used to accurately measure
wind speeds around plant canopy

So what is the optimal airspeed you should be aiming for at
plant canopy? The higher the airspeed, the higher your plant
metabolism will tend to be and the more pressure the plant
will feel to adapt to these environmental conditions. At some
point,  the  plant  is  unable  to  benefit  from  increases  in
airspeeds due to the increased transpiration and wind-chill
caused by the increased air-movement. The results of a study
on tomato plants with different leaf area index (LAI) values
in wind tunnels are shown below. As you can see, crops with
lower LAI values will tend to do be photosynthetically more
efficient, probably because these low LAI values are more
adapted to higher airflow conditions. However, this does show
that a limit to increases in photosynthetic rate based on
airflow does exist.



To reach optimal photosynthetic rates, the wind speed around
the canopy should be at least 0.3m/s, as this is around the
point where flowering plants like tomatoes start reaching a
plateau of photosynthetic production. Having a higher rate
will  provide  little  additional  benefits  under  normal
conditions, although aiming for 0.5-0.6m/s might provide a
buffer to ensure that all regions of the canopy are above the
critical  0.3/s  threshold.  Aim  to  have  a  homogeneous  flow
across the canopy in the entire room/greenhouse as you would
have in a wind-tunnel. Higher airspeeds might be desirable if
CO2 enrichment is being done, although care must be taken to
ensure that the relative humidity is high enough to account
for the additional wind chill that the plants are going to be
subjected  to.  Also,  aim  to  have  these  airflow  conditions
through the entire life of the plant, as early adaptations to
the airflow regime will tend to limit what can be achieved by
trying to increase airflow at a later time.

Photosynthetic rate as a function of windspeed, LAI stands for
(Leaf Area Index). Taken from this article.

When possible, make sure you compare the LAI values of the
different plants you have available. Low LAI values are going
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to be more suited to high density crops as their efficiency
per leaf area unit will be significantly higher and it will be
easier to maintain high airflow speeds within the canopy,
while crops with high LAI values will make it more difficult
for air to move through the canopy plus their photosynthetic
efficiency per leaf area unit will be substantially lower.


