
Organic  nitrogen  in
hydroponics, the proven way
Nitrogen is a critical nutrient for plants. In hydroponics, we
can  choose  to  provide  it  in  three  ways,  as  nitrate,  as
ammonium or as organic nitrogen. This last choice is the most
complex  one.  It  contains  all  possible  nitrogen-containing
organic molecules produced by organisms, such as proteins and
nucleic  acids.  Since  nitrate  and  ammonium  are  simple
molecules, we know how plants react to them, but given that
organic nitrogen can be more complicated, its interactions and
effects on plants can be substantially harder to understand.
In this post, we will take an evidence-based look at organic
nitrogen, how it interacts in a hydroponic crop and how there
is  a  proven  way  to  use  organic  nitrogen  to  obtain  great
results in our hydroponic setups.

An organic nitrogen source, product of corn fermentation, rich
in protein and humic acids
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Nitrogen uptake by plants
The main issue with organic nitrogen is its complexity. Plants

will mainly uptake nitrogen as nitrate (NO3
–) and will also

readily uptake nitrogen as ammonium (NH4
+) to supplement some

of their nitrogen intake. However, organic nitrogen is made up
of larger, more complex molecules, reason why its uptake is
more complicated. Various studies have looked into whether
plants can actually uptake organic nitrogen directly at all
(1, 2). They have found that while some uptake is possible, it
is unlikely to be the main contributor to a plant’s nitrogen
uptake. While plants might be able to uptake this organic
nitrogen to some extent, especially if it is comprised of
smaller molecules (3, 6), it is unlikely that this nitrogen
will  be  able  to  replace  the  main  absorption  pathway  for
nitrogen in plants, which is inorganic nitrate.

Effects  of  organic  nitrogen  in
hydroponics
Many researchers have tried to figure out what the effect of
organic nitrogen is in hydroponics. This study (4), looked at
the  effect  of  various  organic  nitrogen  sources  in  the
cultivation of lettuce. The study tried to measure how these
fertilizers compared against a complete Hoagland solution. The
results show that the organic nitrogen sources were unable to
successfully compete with the standard mineral nutrition. The
best result was obtained with blood meal, with less than half
of the yield obtained from the Hoagland solution. It is clear
that this study is not fair, as using organic nitrogen sources
as the sole source of nutrition means more deficiencies than
simply nitrogen might be present, but it does highlight some
of the challenges of using organic nitrogen in hydroponics.

Another  study  (5),  performed  a  more  direct  comparison  of
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various different nitrogen sources, changing only the nitrogen
source between nitrate, ammonium, and organic nitrogen in the
cultivation of tomatoes. Organic nitrogen performed the worst
across  most  measurements  in  the  study.  This  showed  that
organic  nitrogen  is,  by  itself,  not  a  suitable  form  of
nitrogen for plant absorption and is unable to replace the
nutrition provided by a synthetic inorganic nitrate source.
This is especially the case when the organic nitrogen comes
from more complex sources.

Taken from this thesis.

How to solve these issues
As we’ve seen, the main problem with organic nitrogen is that
plants cannot uptake it efficiently. However, the nitrogen
cycle provides us with mechanisms to convert organic nitrogen
into mineral nitrate which plants can readily metabolize. The
best way to achieve this is to prepare compost teas using the
organic nitrogen source to create a nutrient solution that is
better suited for plants. The use of nitrifying organisms
provides the best path to do this. These organisms are present
in a variety of potting soils and composts, but can also be
bought and used directly.

This  study  (7)  showed  how  using  goat  manure  coupled  with
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nitrifying bacteria was a viable path to generate a nutrient
solution suitable for plant growth. Another study (8), also
using manure, confirms that viable nutrient solutions can be
created and used to grow crops successfully when compared to
hydroponic  controls.  Manure,  as  an  animal  waste  product,
contains a lot of the macro and micronutrients necessary for
plant growth, providing an ideal feedstock for the creation of
a full replacement for a nutrient solution.

Another interesting study (9) uses vegetable sources in order
to study the creation of such solutions. I recently used this
study to create a detailed post about how to create a nitrate-
rich compost tea for use in hydroponics starting from corn
steep liquor and bark compost as inputs.

In conclusion
Organic nitrogen sources, by themselves, are not suitable as
the  main  source  of  nitrogen  for  plant  growth.  This  is
especially true of very complex nitrogen sources, such as
those contained in blood meal, corn steep liquor and fish
emulsions.  However,  we  can  take  advantage  of  nitrifying
bacteria and use these inputs to create nitrate-rich solutions
that can be used to effectively grow plants. This is a proven
solution that has been tried and tested in multiple studies
and in nature for hundreds of thousands of years. Instead of
attempting to use organic nitrogen sources either directly in
the hydroponic solution or as media amendments, create compost
teas with them that contain readily available mineral nitrate
instead.

Do  you  use  organic  nitrogen  in  hydroponics?  What  is  your
experience?
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Aquaponics  vs  hydroponics,
which is best and why?
In hydroponic culture, plants are grown with the help of a
nutrient solution that contains all the substances required
for plant growth. In these systems, the nutrient solution is
prepared using externally sourced chemicals, which can be of a
synthetic or natural origin. On the other hand, in aquaponics,
a plant growing system is coupled with an aquaculture system –
a system that raises fish – so that the plants feed on the
waste coming from the fish. In theory, aquaponics offers the
benefits of a simplified, closed system with an additional
upside – the ability to produce fish – while a hydroponic
system  requires  a  lot  of  additional  and  more  complicated
inputs.  Through  this  post,  we  will  use  the  current  peer-
reviewed literature to take a deep look into aquaponics vs
hydroponics, what are the advantages and disadvantages and why
one might be better than the other. A lot of the information
below has been taken from this 2019 review on aquaponics (9).

Basic process diagram of an aquaponic setup (from here)

Complexity
An  aquaponic  system  might  seem  simpler  than  a  hydroponic
system. After all, it is all about feeding fish regular fish
food and then feeding the waste products to plants. However,
it is actually not that simple, since there are substantial
differences  between  the  waste  products  of  fish  and  the
nutritional needs of plants. One of the most critical ones is
nitrogen.

This element is excreted by fish in its ammoniacal form but
plants require nitrogen in its nitrate form. This means that

https://scienceinhydroponics.com/2021/04/aquaponics-vs-hydroponics-which-is-best-and-why.html
https://scienceinhydroponics.com/2021/04/aquaponics-vs-hydroponics-which-is-best-and-why.html
https://scienceinhydroponics.com/2021/03/is-hydroponics-organic-is-it-better-or-worse.html
https://scienceinhydroponics.com/2021/03/is-hydroponics-organic-is-it-better-or-worse.html
https://www.sciencedirect.com/science/article/abs/pii/S0959652619313812
https://journals.ashs.org/horttech/view/journals/horttech/21/1/article-p6.xml


you need to have a biofilter system containing bacteria that
can  turn  one  into  the  other.  Furthermore,  the  chemical
conditions ideal for nitrification are basic, while plants
prefer solutions that are slightly acidic. This mismatch in
the optimal conditions of one system compared to the other
makes the management of an aquaponic system substantially more
complicated than the management of a traditional hydroponic
system (1).

Furthermore, plant macronutrients like Potassium and Calcium
and micronutrients like Iron are often present at low levels
in aquaponic solutions. Plants that have higher demands for
these elements, such as large flowering plants or some herbs,
might have important deficiencies and issues when grown in an
aquaponic system (2, 3). This means that supplementation is
often required in order to achieve success with these crops.
Achieving ideal supplementation rates often requires chemical
analysis  in  order  to  properly  gauge  the  amounts  of  these
elements that are required.

Additionally, aquaponic systems require additional area for
fish and a lot of additional labor to manage the fish, the
biofilters, and other sections of the facility that would not
exist under a purely hydroponic paradigm. This article (16),
better describes some of the economic and practical tradeoffs
in terms of complexity when going from a hydroponic to an
aquaponic facility.

Yield and quality
Given the above, it could be easy to think that yields and
quality of products coming from aquaponics would be worse.
However, the evidence points to the contrary. Multiple studies
looking at aquaponics vs hydroponics quality and yields have
shown that aquaponics products can be equivalent or often
superior to those produced in hydroponic environments (4, 5,
6, 7, 8). A variety of biological and chemical factors present
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in the aquaponic solution could offer bio-stimulating effects
that are not found in traditional hydroponic solutions. For a
detailed meta-analysis gathering data from a lot of different
articles on aquaponics vs hydroponics see here (14).

The best results are often found with decoupled aquaponic
systems. In these systems, the aquaponic system is treated as
separate  aquaculture  and  hydroponic  systems.  The  nutrient
solution is stored in a tank that is used by the hydroponic
facility as its main feedstock to make nutrient solution. Its
chemistry is then adjusted before it is fed to the hydroponic
system.

An aquaponic setup growing leafy greens

Growing Systems
Traditionally, Nutrient Film Technique (NFT) systems have been
preferred in commercial hydroponic culture due to their high
yield and effectiveness. However, aquaponic systems do better
with setups that can handle large levels of particulates, due
to their presence in the aquaponic nutrient solution. For this
reason, deep water culture (DWC) is the preferred method for
growing in commercial hydroponic systems. This is also because
dark leafy vegetables are the most commonly grown products in
aquaponic setups and DWC setups are particularly well suited
to grow this type of plants.

Sustainability
Aquaponic  systems  are,  on  average,  more  sustainable  than
hydroponic  systems  in  terms  of  fertilizer  usage.  When
comparing Nitrogen and Phosphorus usage between a hydroponic
and an aquaponic crop, it seems to be clear that aquaponic
crops are much more efficient (12). An aquaponic crop can
offer  the  same  quality  and  yield  with  drastically  lower
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fertilizer use and carbon dioxide emissions due to these facts
(13).

The aquaponic closed system diagram, taken from here

The economics
Due to the poor nutritional characteristics of the aquaponic
solutions for flowering plants, most aquaponic growers have
resorted to the growing of leafy greens. A 2017 study (10)
showed that profits from growing basil were more than double
of those attained by growing Okra, due to the fact that basil
could be grown with little additional supplementation while
Okra  required  significant  modification  of  the  aquaponic
solution to fit the plants’ needs.

Due to the fact that large flowering plants require large
amounts  of  mineral  supplementation  in  order  to  be  grown
successfully  in  aquaponics,  they  are  seldom  grown  in
aquaponics setups. Since leafy greens eliminate the need for
such supplementation, can be grown faster, and suffer from
substantially less pest pressure, it is a no-brainer in most
cases to grow leafy greens instead of a crop like tomatoes or
peppers.  However,  high-value  crops  like  cannabis  might  be
attractive for aquaponics setups (10, 11).

Aquaponics often require economies of scale to become viable.
The smallest scale aquaponic setups, like those proposed by
FAO models, can offer food production capabilities to small
groups of people, but suffer from a lack of economic viability
when the cost of labor is taken into account (12). It is,
therefore, the case that, to be as profitable as hydroponics,
aquaponic facilities need to be implemented at a relatively
large scale from the start, which limits their viability when
compared with hydroponic setups that can offer profitability
at lower scales. As a matter of fact, this 2015 study (15)
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showed  that  most  aquaponic  farms  were  implemented  at
relatively small scales and had therefore low profitability
values.

Nonetheless, aquaponics does offer a much more sustainable way
to produce food relative to conventional hydroponic facilities
and  does  offer  economic  advantages,  especially  in  regions
where low water and fertilizer usage are a priority (14).

Which one is best then?
It depends on what your priorities are. If you want to build a
setup with few uncertainties that can deliver the most profit
at the smallest scale, then hydroponics is the way to go.
Aquaponic setups have additional complexities, uncertainties,
needs of scale, and limitations that hydroponic crops do not
have. Building a hydroponic commercial setup is a tried-and-
tested  process.  Hydroponics  offers  predictable  yields  and
quality for a wide variety of plant products. There is also a
wide industry of people who can help you achieve this, often
with  turn-key  solutions  for  particular  plant  species  and
climates.

On the other hand, if you want to build a setup that is highly
sustainable,  has  as  little  impact  as  possible  on  the
environment, has very low fertilizer and water use and can
deliver the same or better quality as a hydroponic setup, then
aquaponics is the road for you. Aquaponics has significantly
lower impact – as it reduces the impact of both plant growing
and fish raising – and can deliver adequate economic returns
if the correct fish and plant species are chosen.

In the end, it is a matter of choosing which things are most
important for you and most adequate for the circumstances you
will be growing in. Sometimes, limited fertilizer and water
availability,  coupled  with  higher  demand  for  fish,  might
actually make an aquaponic setup the optimal economic choice
versus a traditional hydroponic setup. However, most of the
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time a purely economic analysis would give the edge to a
hydroponic facility.

If  you  are  considering  building  an  aquaponic  system,  a
decoupled  system  that  produces  Tilapia  and  a  deep  water
culture system producing dark leafy greens seems to be the
most popular choice among commercial facilities.

Which do you think is better, aquaponics or hydroponics?

The ultimate EC to ppm chart
and calculator
Electrical  conductivity  (EC)  meters  in  hydroponics  will
generally give you different types of readings. All of these
readings  are  conversions  of  the  same  measurement  –  the
electrical conductivity of the solution – but growers will
often only record one of them. The tools presented in this
page will help you convert your old readings from one of these
values to the other, so that you can compare with reference
sources or with readings from a new meter. In this page you
can figure out the scale of your meter, convert from ppm to EC
and from EC to ppm.

The TDS reading of different meters will be done on different
scales, so it is important to know the scale of your meter in
order to perform these conversions. These scales are just
different reference standards depending on whether your meter
is comparing the conductivity of your solution to that of an
NaCl, KCl or tap water standard. To learn more about how TDS
scales work I would suggest you watch my youtube video on the
subject. To compare the readings from different meters, always
compare the EC (mS/cm) reading, do not compare ppm readings
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unless you are sure they are in the same scale.

My go-to EC meter recommendation is the Apera EC60

To figure out the scale of the meter, measure the EC (mS/cm)
and TDS (ppm) of the exact same solution with your meter.
After this, input the values in the first calculator below.
You can then use this scale value to convert between EC and
ppm using the other two calculators below. If you already know
the scale of your meter you can use the other two calculators
and skip the first step. The meter scale will usually be 500,
600 or 700.

Figure out the Scale of the Meter

TDS (ppm) reading: 

EC (mS/cm) reading: 

 Calculate 

https://amzn.to/3wqJ9L6


Meter scale: 

Convert ppm to EC

TDS (ppm) reading: 

Meter scale: 

 Calculate 

EC in mS/cm: 

Convert EC to ppm

EC reading mS/cm: 

Meter scale: 

 Calculate 

TDS (ppm) reading: 

Create a table for reference

Meter scale: 

 Generate Table 

If  you  would  like  to  learn  more  about  EC  readings  in
hydroponics I would suggest reading the following posts on my
blog:

Comparing the conductivity of two different solutions
Improving  on  HydroBuddy’s  theoretical  conductivity
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model, the LMCv2
FAQ – Electrical Conductivity (EC) in Hydroponics

Using  electro-degradation  to
enhance  yields  in
recirculating hydroponics
The efficient use of nutrient solutions is a very important
topic in hydroponics. Although some commercial growers use
run-to-waste systems where solutions are not recirculated, the
economics of fertilizer use often demand re-circulation in
order to enhance nutrient utilization and maximize growing
efficiency. However one of the biggest problems found when
circulating nutrient solution continuously is the build-up of
plant exudates, which can be toxic and detrimental to plant
growth.

Image taken from this article
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Several solution for this have been studied historically, most
commonly the use of filtration systems – such as activated
charcoal cartridges – to capture these exudates and prevent
their accumulation. The problem with this approach is that
activated carbon – or other filters – are not neutral to some
of  the  components  of  nutrient  solutions  and  might
disproportionately and efficiently capture metal chelates and
eventually cause nutrient deficiencies. There are some ways
around  this  –  such  as  changing  the  formulations  or
replenishing solutions after filtering – but both are far from
ideal.

More recently a paper has been published showing how electro-
degradation can actually alleviate this problem by destroying
these  exudates  –  which  are  commonly  organic  acids  –  in
nutrient solutions. The paper talks about how they used this
technique  to  treat  recirculating  solutions  in  strawberry,
eliminating  autotoxicity  and  increasing  fruit  yields
substantially.

The technique is very simple, basically using either a DC or
AC  current  passed  through  an  electrode  that  the  solution
circulates through, destroying the problematic molecules in
the process. The first image in this post clearly shows how
not  renewing  the  solution  causes  important  problems  with
yields that are completely removed by the use of the AC based
electro degradation.
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Image taken from this article

Another advantage of this technique is that – contrary to
filtering techniques – there is little loss in the amount of
nutrients  in  solution  when  performing  the  AC  electro-
degradation.  Since  the  oxidation/reduction  of  the  metal
chelates used is highly reversible, the actual concentration
of these elements in solution remains practically the same
after treatment. You can see this in the image above, where
there  is  no  statistically  significant  change  for  the
concentration  of  nutrients  in  solution.

The paper concludes suggesting a treatment of 24 hours (for
300L in the experiments) every three weeks, to completely
recover from the exudates present in solution. For this AC
application they used a frequency of 500Hz at 14V with an
electrode  area  of  around  53  square  centimeters,  made  of
titanium metal. For this process you need an inert metal or
conductive  material  that  will  not  react  at  the  potential
values used. You can buy titanium metal tubes – which are not
expensive – to build an anode/cathode pair to carry out this
experiment.  Note  that  the  frequency  and  voltage
characteristics are vital so using a proper power supply to
generate them is of the highest importance.

The above technique is novel and easy to build for treating

https://www.sciencedirect.com/science/article/pii/S0304423818305764


commercial hydroponic solutions. It is far easier and economic
compared with filtering techniques and can be applied from
smaller to larger scale growing operations.

A simple Arduino based sensor
monitoring  platform  for
Hydroponics
Last time I posted about automation I talked about how I use
an Arduino to automate the monitoring and management of my
home hydroponic system. Today I want to talk about how you can
build an Arduino based station to monitor the most important
variables of your hydroponic crop without having to solder
anything, use complicated bread board setups or learn to how
to do any coding. I will walk you through some of the steps to
build the system, talk about the parts you need and show you
the code you need to run to have this setup work.

–
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–

A basic sensor monitoring application for hydroponics should
be able to get the most critical information needed to grow a
crop  successfully.  The  basic  variables  you  would  want  to
monitor to achieve this goal would be: temperature, humidity,
carbon dioxide concentration, pH and electrical conductivity.
An Arduino micro-controller can help you achieve all these
goals  at  a  reduced  cost  when  compared  with  commercially
available monitoring solutions of the same quality.

–

Arduino UNO R3 – 23.90 USD
LCD 12864 screen shield – 24.05 USD
DHT22 temperature and humidity sensor – 9.50 USD
Gravity pH sensor – 56.95 USD
Gravity EC sensor – 69.90 USD
Gravity CO2 sensor – 58.00 USD

–

The list above contains all the pieces you need to get this to
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work. This includes the Arduino plus an LCD display that we
will use to be able to read the information we obtain from the
sensors. I have included links to the pieces at the dfrobot
site (one of my favorite sources for DIY electronics) but you
can definitely get them elsewhere if you prefer. The pH sensor
included here is of industrial quality while the EC sensor has
a lower quality level. However I have been able to use both
for extended periods of time without anything else than a
calibration around once every 2 months. If you want you can
also purchase an industrial quality EC probe if you find the
prove from the included Gravity kit to be insufficient for
your needs.

The cool thing about this setup is that the LCD screen already
contains all the connections we need for the sensors. The
bottom part contains numbered analog inputs while the left
part contains numbered digital inputs. In this setup we have
two digital sensors – the DHT22 humidity/temperature sensor
and the solution temperature sensor that comes with the EC
sensor – and three analog sensors, which are pH, EC and CO2. I
have put some text on the image to show you exactly where you
should connect the sensors according to the code, make sure
the orders of the colors on the wires match the colors on the
connector in the LCD screen. The Arduino code contains some
defines with the pins for each sensor so you can just change
those numbers if you want to connect the sensors in different
places.

–

//Libraries
#include <DHT.h>;
#include <U8glib.h>
#include <stdio.h>
#include <OneWire.h>
#include <Wire.h>
#include <Arduino.h>
#include <Adafruit_Sensor.h>



//PINS
#define DHT_PIN        5          // DHT pin
#define DHTTYPE        DHT22      // DHT 22  (AM2302)
#define PH_PIN         2          //pH meter pin
#define CO2_PIN        3          //ORP meter pin
#define EC_PIN         1          //EC meter pin
#define DS18B20_PIN    6          //EC solution temperature
pin

// AVERAGING VALUES
#define MEDIAN_SAMPLE 8
#define MEASUREMENTS_TAKEN 100

// EC - solution temperature variables
#define StartConvert 0
#define ReadTemperature 1

//  EC  values  //  CHANGE  THESE  PARAMETERS  FOR  EC  PROBE
CALIBRATION
#define EC_PARAM_A 0.00754256

//pH  values  //  CHANGE  THESE  PARAMETERS  FOR  PH  PROBE
CALIBRATION
#define PH_PARAM_A 1.0
#define PH_PARAM_B 0.0

#define XCOL_SET 55
#define XCOL_SET2 65
#define XCOL_SET_UNITS 85

//--------------------------

DHT dht(DHT_PIN, DHTTYPE);
U8GLIB_NHD_C12864 u8g(13, 11, 10, 9, 8);
unsigned long int avgValue;
float b, phValue;
int buf[MEASUREMENTS_TAKEN],tmp;
int chk;
float hum;
float temp;
unsigned int AnalogAverage = 0,averageVoltage=0;



float solution_temp,ECcurrent;
unsigned int levelAverage;
float co2;
OneWire ds(DS18B20_PIN);

//--------------------------

void draw() {
  u8g.setFont(u8g_font_04b_03);
  u8g.drawStr( 0,11,"Temp:");
  u8g.setPrintPos(XCOL_SET,11);
  u8g.print(temp);
  u8g.drawStr( XCOL_SET_UNITS, 11,"C" );
  u8g.drawStr(0,21,"Humidity:");
  u8g.setPrintPos(XCOL_SET,21);
  u8g.print(hum);
  u8g.drawStr( XCOL_SET_UNITS,21,"%" );
  u8g.drawStr(0,31,"pH:");
  u8g.setPrintPos(XCOL_SET,31);
  u8g.print(phValue);
  u8g.drawStr(0,41,"EC:");
  u8g.setPrintPos(XCOL_SET,41);
  u8g.print(ECcurrent);
  u8g.drawStr( XCOL_SET_UNITS,41,"mS/cm" );
  u8g.drawStr(0,51,"Sol.Temp:");
  u8g.setPrintPos(XCOL_SET,51);
  u8g.print(solution_temp);
  u8g.drawStr( XCOL_SET_UNITS,51,"C" );
  u8g.drawStr(0,61,"CO2:");
  u8g.setPrintPos(XCOL_SET,61);
  u8g.print(co2);
  u8g.drawStr( XCOL_SET_UNITS,61,"ppm" );
}

float TempProcess(bool ch)
{
  static byte data[12];
  static byte addr[8];
  static float TemperatureSum;
  if(!ch){
          if ( !ds.search(addr)) {



              ds.reset_search();
              return 0;
          }
          if ( OneWire::crc8( addr, 7) != addr[7]) {
              return 0;
          }
          if ( addr[0] != 0x10 && addr[0] != 0x28) {
              return 0;
          }
          ds.reset();
          ds.select(addr);
          ds.write(0x44,1);
  }
  else{
          byte present = ds.reset();
          ds.select(addr);
          ds.write(0xBE);
          for (int i = 0; i < 9; i++) {
            data[i] = ds.read();
          }
          ds.reset_search();
          byte MSB = data[1];
          byte LSB = data[0];
          float tempRead = ((MSB << 8) | LSB);
          TemperatureSum = tempRead / 16;
    }
          return TemperatureSum;
}

void calculateAnalogAverage(int pin){
 AnalogAverage = 0;
  for(int i=0;i<MEASUREMENTS_TAKEN;i++)
  {
    buf[i]=analogRead(pin);
    delay(10);
  }
  for(int i=0;i<MEASUREMENTS_TAKEN-1;i++)
  {
    for(int j=i+1;j<MEASUREMENTS_TAKEN;j++)
    {
      if(buf[i]>buf[j])



      {
        tmp=buf[i];
        buf[i]=buf[j];
        buf[j]=tmp;
      }
    }
  }
  avgValue=0;

  for(int  i=(MEASUREMENTS_TAKEN/2)-
(MEDIAN_SAMPLE/2);i<(MEASUREMENTS_TAKEN/2)+(MEDIAN_SAMPLE/2);i
++){
    avgValue+=buf[i];
  }
  AnalogAverage = avgValue/MEDIAN_SAMPLE ;
}

void read_pH(){
  calculateAnalogAverage(PH_PIN);
  phValue=(float)AnalogAverage*5.0/1024;
  phValue=PH_PARAM_A*phValue+PH_PARAM_B;
}

void read_EC(){
  calculateAnalogAverage(EC_PIN);
  solution_temp = TempProcess(ReadTemperature);
  TempProcess(StartConvert);
  averageVoltage=AnalogAverage*(float)5000/1024;
  float TempCoefficient=1.0+0.0185*(solution_temp-25.0);

  float
CoefficientVolatge=(float)averageVoltage*TempCoefficient;
  ECcurrent=EC_PARAM_A*CoefficientVolatge;
}

void read_CO2(){
  float voltage;
  float voltage_difference;
  calculateAnalogAverage(CO2_PIN);
  voltage = AnalogAverage*(5000/1024.0);
  if(voltage == 0)
  {
    co2=-100.0;



  }
  else if(voltage < 400)
  {
    co2=0.0;
  }
  else
  {
    voltage_difference=voltage-400;
    co2=voltage_difference*50.0/16.0;
  }
}

void setup()
{
    pinMode(13,OUTPUT);
    Serial.begin(9600);
    dht.begin();
    u8g.setContrast(0);
    u8g.setRot180();
    TempProcess(StartConvert);
}

void loop()
{

  digitalWrite(13, HIGH);
  delay(800);
  digitalWrite(13, LOW);
  hum = dht.readHumidity();
  temp= dht.readTemperature();
  read_pH();
  read_EC();
  read_CO2();

  u8g.firstPage();
    do  {
      draw();
    }
      while( u8g.nextPage() );
}

–



After you connect the sensors you can then upload the code
above using the Arduino IDE to your Arduino via USB. You will
need to install the following Arduino libraries to get it to
compile and upload:

–

AdaFruit unified sensor driver
AdaFruit DHT sensor library
OneWire library
U8glib library

–

After you upload this to your Arduino it should start and show
you a screen with the temperature, humidity, pH, EC and carbon
dioxide readings. The carbon dioxide concentration might show
as -100 in the beginning, which simply means that the sensor
is heating up (it requires a few minutes before it can start
giving readings).

It is also worth noting that you should calibrate your pH
sensor. To do this you should read the pH of a 7.0 buffer (M7)
– record the value you get – and then repeat the process with
a pH 4.0 buffer (M4). You can then change the PH_PARAM_A and
PH_PARAM_B values in the code (right at the beginning) to make
the sensor match your measurements. The PH_PARAM_A parameter
should be equal to 3/(M7-M4) while PH_PARAM_B should be 7-
M7*PH_PARAM_A. If you ever need to recalibrate set PH_PARAM_A
to 1 and PH_PARAM_B to 0 and repeat the process. For the EC
sensor you should perform a calibration using the 1.412 mS/cm
solution that comes with the sensor and then change EC_PARAM_A
so  that  your  sensor  matches  this  reading
(1.412/(MEC/0.00754256)).

With  this  new  monitoring  station  you  should  now  have  a
powerful tool to monitor your hydroponic system and make sure
everything is where you want it. Of course making the arduino
intereact with a computer to record these values and then

https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/DHT-sensor-library
https://github.com/PaulStoffregen/OneWire
https://github.com/olikraus/u8glib


implementing control mechanisms using fans, peristaltic pumps,
water pumps, humidifiers/dehumidifiers and other appliances is
the next step in complexity.

 

A Step Forward : Moving from
AllHydroponics  to
ScienceinHydroponics.com
Through the past few weeks I have been meditating about the
current limitations of the blogger platform and how it makes
my writing and customization options smaller and the look of
my blog less professional. Due to the fact that I intend to
start writing more and expanding this blog it becomes evident
that I will need a much more powerful blog hosting platform
and  blogger  seems  to  be   limiting  instead  of  helping  my
efforts in this regards. For this reason I have taken the
decision to move my blog from its current blogspot home to a
new self-hosted domain which I will use from now on to post
new articles and releases of hydrobuddy.

This new website – scienceinhydroponics.com – will be the new
home of my blogging effort in the area of hydroponic crop
production and research. I will stop posting new articles on
blogger and the old blogger website will start redirecting to
the new wordpress based blog today. The idea of this new blog
is to allow me to customize my website as much as I want and
to be able to exploit the full potential of my web presence
through the use of a self-hosted domain. In the future I hope
that this move forward will make my content more professional
and my efforts more worth-while. Future versions of hydrobuddy

https://scienceinhydroponics.com/2010/09/a-step-forward-moving-from-allhydroponics-to-scienceinhydroponics-com.html
https://scienceinhydroponics.com/2010/09/a-step-forward-moving-from-allhydroponics-to-scienceinhydroponics-com.html
https://scienceinhydroponics.com/2010/09/a-step-forward-moving-from-allhydroponics-to-scienceinhydroponics-com.html
http://scienceinhydroponics.com


will now be released and maintained on the new wordpress blog
and the previous blogger implementation will not be maintained
anymore.

Of course if you have linked to my old blog the pages will not
be deleted but they will cause automatic redirection towards
my new domain. However the RSS feed will stop being updated so
feel free to subscribe through my new blog’s RSS feed (links
available on the top right corner of the blog). There are also
now several buttons you can use in the bottom of each page to
share the contents of the posts on facebook, twitter, etc and
a Printer friendly function that will allow you to easily
print my blog’s contents without any of the menus, etc. I hope
that you will greatly enjoy this new blog which is a milestone
achievement for me and the start of a new era for me as a much
more professional blogger :o)

Feel free to leave any comments or suggestions ! :o)

Ion  Selective  Electrodes  in
Hydroponic Culture
Currently,  hydroponic  growers  rely  on  a  combination  of
electrical conductivity and pH measurements in order to assess
the  quality  and  durability  of  their  hydroponic  nutrient
solutions. However, many are unaware that hydroponic gardening
can  be  much  furtherly  enhanced  by  the  addition  of  ion
selective  electrodes.
In a certain sense, all hydroponic gardeners have used an ion
sensitive electrode since the pH meter they use to measure the
concentration of H3O(+) ions is actually selective to that ion.
Imagine if every time you read pH you had interference from
all the other ions present inside the hydroponic solution.

https://scienceinhydroponics.com/2009/02/ion-selective-electrodes-in-hydroponic-culture.html
https://scienceinhydroponics.com/2009/02/ion-selective-electrodes-in-hydroponic-culture.html


Nonetheless,  there  are  currently  a  large  variety  of  ion
selective electrodes available and many of them can be used in
hydroponic gardening to accurately control the concentration
of several elements.

For  example,  ion  selective  electrodes  with  very  good
selectivity and little interference exist for the nitrate ion.
These  type  of  electrodes  can  be  purchased  from  many
manufacturers but can be easily found here. For just 229 USD,
the grower is able to accurately control the amount of nitrate
ions present inside the hydroponic solution independently from
other nutrients.

By measuring the potential difference given by the electrode
when the solution is prepared, the grower is able to easily
detect and graph changes within a certain growing period. Best
of all, since the ion selective electrode gives a real measure
of ion concentrations, the grower is able to resupply spent
nitrogen without unbalancing the hydroponic growing solution.

Ion selective electrodes exist for a variety of ions including
nitrate, ammonia, phosphate, potassium, iron and copper. This
technology will prove to be the future of hydroponics as it
will guarantee the grower the ability to accurately control
and resupply the exact amount of nutrients needed by his or
her growing plants. These electrodes can also be easily wired
to computer software in order to monitor nutrient use 24/7
(below a display of several ion selective electrodes)

–

http://www.vernier.com/til/1432.html
http://www.idswater.com/Common/Exhib_3584/ion_selective_electrodes.jpg

