
Common  questions  about
silicon in nutrient solutions

Introduction
We know that silicon can be a very beneficial element for many
plant species (see some of my previous posts here and here).
It  mainly  enhances  disease  resistance  and  increases  the
structural  integrity  of  plant  tissue.  Because  of  these
advantages, you will want to add silicon to your nutrient
solution.  However,  there  are  a  lot  of  misconceptions  and
questions about the use of Si in plants and the exact form of
Si that you should use. In this post I am going to address
some of the most common questions about silicon sources and
how to use them properly.

Alkali metal silicates are the most common sources of soluble
silicon used. They also have the lowest cost by gram of Si.
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What sources are available?
To use silicon in nutrient solutions, we will generally have 3
types of sources available.

First, we have basic potassium silicates, which are solids or
solutions derived from the reactions of silica with potassium
hydroxide. In this category you have popular products like
AgSil 16H and liquid concentrates like Growtek Pro-Silicate.
These products have a very basic pH.

Second, we have acid stabilized silicon products. These are
products like PowerSi Classic and OSA28. These products are
always  liquids  and  contain  monosilicic  acid  in  an  acidic
environment,  with  stabilizing  agents  added  to  prevent  the
polymerization of the monosilicic acid.

Third,  we  have  non-aqueous  products  with  organosilicon
reagents,  like  Grow-Genius.  These  products  do  not  contain
water and are derived from reagents like TEOS (tetraethyl
ortho-silicate) and other Si containing compounds, mainly Si
containing surfactants. They are not in forms that are plant
available but will generate these forms when in contact with
water.

Do  potassium  silicates  contain
“less available” silicon?
When you dissolve a potassium silicate at high concentration,
it forms silicate oligomers. These are large silicon chains
that get stabilized in basic solutions because of their high
negative  charge.  This  is  why  you  can  create  highly
concentrated potassium silicate solutions in basic pH. As a
matter of fact, making the solutions more basic with added
potassium hydroxide often enhances the solubility of potassium
silicate solids like AgSil16H (see here for a procedure on how
to do this). However, when the molar concentration decreases
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the silicate hydrolyzes into monomeric silicate anions.

Original  background  image  taken  from  here.  To  create  a
monomeric solution you need high pH and low concentration.
Then you lower the pH to get to monosilicic acid.

When potassium silicate is diluted in nutrient solutions, this
is  exactly  what  happens.  The  reduction  in  concentration
hydrolyzes the Silicates into monomers. If the solution pH is
then lowered, the final form present will be monosilicic acid.
If you properly prepare a nutrient solution with potassium
silicate, the end form will be monosilicic acid, the form that
is mostly available to plants.

It is a misconception that potassium silicates are somehow
less “plant available”. They end up producing monosilicic acid
and being perfectly available, when used properly.
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How do I properly use a potassium
silicate?
First, if using a solid, you need to prepare a stock solution
no more concentrated than 45g/L. The recommendation with AgSil
16H would be to prepare a stock solution at 15g/gal and then
using this solution at a rate of 38mL/gal of final solution
(injection rate of 1%). To increase the stability of your
AgSil 16H concentrate you can add 1g/gal of KOH. The end
addition to your solution will be +9.8ppm of Si as elemental
Si  and  +11.55ppm  of  K.  The  KOH  addition  and  low  15g/gal
concentration ensures that silicate will already be largely
present as monomeric silicate anions.

Second, make sure to add this solution to your water first. If
you add this solution after nutrients, the Si will come into
contact with Ca and Mg in its concentrated form, which will
cause problems with its stability in solution. Add it first,
then add your lowest pH fertilizer concentrate, then your Ca
containing concentrate, then finally decrease the pH with an
acid to the desired level if needed.

This procedure ensures you get a final solution containing
monosilicic acid that will be stable. If you increase the Si
in the stock solution, change the injection order, or increase
the Si in the end solution beyond 20ppm of Si as elemental Si
you might end up with precipitated and unavailable Si forms.

Why would you use acid-stabilized
Si products?
Acid stabilized silicon sources are not more plant available.
However, their starting pH is usually low and their mineral
composition can also be minimal (depending on the preparation
process).  This  means  they  can  lower  the  need  for  acid
additions and can help lower the pH of hard water sources when



used. They can also contain stabilizing agents that could be
beneficial for plants. However, the exact stabilizers used and
the exact mineral composition used will vary substantially by
product, since there are a wide array of choices available to
manufacturers.

In the end, at the pH where plants are fed, acid stabilized Si
and  potassium  silicate  sources  generate  the  exact  same
monosilicic acid. Plant availability is not an advantage of
using this sort of product.

Why  would  you  use  non-aqueous  Si
products?
These  products  can  be  much  more  highly  concentrated  than
either  basic  silicon  or  acid  stabilized  liquid  silicon
products by mass. This is because they are made from Si forms
that are highly stable under water-free conditions. This means
you can buy a small amount and add a small amount to your
reservoir per gallon of solution prepared. Another advantage
is that they are pH neutral and do not alter the pH of
nutrient solutions at all. The formation of the silicic acid
from these products requires only reactions with water, so no
mineral  addition,  stabilizer  additions  or  pH  modifications
happen.



Reaction of TEOS with water to produce different silicic acids
(plus ethanol)

A significant point however is that the reaction of a product
like TEOS with water releases other substances into solution.
For each 10 ppm of Si as elemental Si that you add from TEOS
you will in fact be adding ~66pm of ethanol to your solution.
These alcohols can be very detrimental for root and plant
growth, reason why the use of these non-aqueous Si products
needs  to  be  carefully  considered.  When  using  a  product
containing non-aqueous Si sources, it’s important to consider
that these substances can accumulate in your root zone and may
cause problems. Which organics are present and whether they
will cause problems will depend on the exact formulation. When
using  these  organosilicon  sources,  passing  the  nutrient
solution through a carbon filter to remove these organics
before contact with plant roots would be ideal.

Is the final Si in solution from
any product type more stable?
No, all three types of products, when used properly, will end
up  as  stable  monosilicic  acid  in  your  solution.  The
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stabilizing  agents  in  acid-stabilized  products  will  be  so
dilute  that  any  additional  stabilizing  effect  will  be
relatively non-existent. If Si is dilute enough (<20ppm of Si
as  elemental  Si),  then  it  will  be  stable  in  solution
indefinitely  (I  measured  5  weeks  with  no  changes  in
concentration). At higher Si concentration, the Si will tend
to polymerize (no matter which source it comes from) which
will create problems with stability. To have stable Si in
solution make sure that you prepare it properly and that you
keep the concentrations low enough.

If  they  are  mostly  the  same  in
terms of Si availability, why do I
see  differences  between  different
products  at  an  equivalent  Si
application rate?
Despite all of the different Si products leading to the same
form of Si in the final solution, acid-stabilized Si products
will contain a wide array of additional substances that are
going  to  be  active  nutritionally.  For  example,  Boron  and
Molybdenum  are  very  commonly  used  stabilizing  agents.
Products,  like  PowerSi  bloom,  also  contain  “exotic  plant
extracts”  (according  to  their  website).  Commonly  used
stabilizing agents include glycerol, carnitine, choline and
sorbitol. All of these could potentially have an effect on the
plants at the concentrations added with these products. Some
of these stabilizing agents are usually added at 10-50x the
amount of Si present by mass, meaning that your Si supplement
might be adding way more of these stabilizing agents than what
you’re adding in terms of Si.



What product is more cost effective
per delivered mole of monosilicic
acid?
There is a lot of space in labeling regulations to allow
fertilizer  manufacturers  to  trick  people  into  believing  a
product might be more concentrated or dilute than another.
First of all, labeling a product as “% of monosilicic acid”
does not mean that the product contains that percentage of
monosilicic acid, it means that the product contains Si, such
that if that silicon was all converted to mono-silicic acid,
it would give that percent. The only products that contain
monosilicic acid in its actual form from the start are acid-
stabilized Si containing products, which are usually limited
to low concentrations due to the reactivity of this molecule
when present.

Both  non-aqueous  silicon  products  and  soluble  potassium
silicate products contain precursors to monosilicic acid. One
in the form of organosilicon compounds and the other in the
form of silicate chains. As mentioned above, both precursors
can lead to very high conversions to mono-silicic acid when
properly used.

These prices were the lowest prices I could find for each
product  in  Feb  2023.  To  find  current  prices,  I  suggest
searching  any  products  you’re  interested  in.  Composition
values taken are those provided by the manufacturer, converted
to Si as elemental Si. Prices do not include shipping.

To compare the actual concentration of products, it is best to
always convert the amounts to elemental Si percentage values.

https://scienceinhydroponics.com/wp-content/uploads/2023/02/image-8.png


To convert monosilicic acid % values to Si, multiply the value
by 0.2922, to convert SiO2 values to Si, multiply the value by
0.4674. For example, 40% Si as monosilicic acid is equivalent
to 11.68% Si as elemental Si. Soluble potassium silicates like
AgSil 16H can be around ~24% Si as elemental Si by mass,
making them the most highly concentrated and lowest cost form
of  bioavailable  silicon  when  used  properly.  More  highly
soluble  potassium  silicates  than  AgSil16H  will  usually  be
lower in Si, as higher K proportions lead to better solubility
and a lesser need to add KOH when preparing stock solution.
The table above, showcases the price differences per gram of
Silicon of different products as of Jan 2023. When purchased
in bulk (50 lbs) AgSil16H can be up to two orders of magnitude
lower cost than other alternatives.

I have done lab tests measuring molybdenum reactive Si that
show all the Si in AgSil16H can be quantitatively converted to
monosilicic  acid  when  following  the  preparation  guidelines
mentioned in this post.

What is your recommendation?
After studying the subject for years, using different products
with  different  growers  and  testing  the  chemistry  myself
(preparing stabilized silicic acids and measuring active Si
concentrations).  Given  the  price  of  Si  products  and  the
chemistry involved, I would suggest anyone interested in Si
supplementation  in  nutrient  solutions  to  use  a  potassium
silicate solid product. I would suggest to prepare a suitable
stock  with  potassium  silicate  and  potassium  hydroxide  to
increase pH and stability and then prepare their nutrient
solutions from dilutions of this stock. If a solid product
like AgSil 16H is not available, then using a basic silicate
concentrate product would be the next best choice. Usually
preparing  a  more  dilute  stock  from  these  products  is
recommended to ensure the stock already contains monomeric
silicate.
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I don’t think acid-stabilized silicon products or non-aqueous
Si products are worth the price premium. If you’re having
better results with a non-potassium silicate product compared
to  potassium  silicate,  bear  in  mind  that  this  is  likely
because either the potassium silicate stock preparation and
dilution were not done correctly or the product you’re using
contains a substance different from Si that is giving you
those effects. The stabilizing agents themselves are going to
be much lower cost, so testing the eliciting effects of these
agents  might  be  more  economical  for  you  than  using  these
expensive products long term.

In cases where mixing stocks and handling basic reagents is
problematic or there is limited availability to adjust pH,
then  the  use  of  non-aqueous  Silicon  reagents  might  be
desirable. Non-aqueous silicon forms are also the most robust
to mixing errors – wrong mixing order, mixing at variable pH,
etc – because the hydrolysis reactions happen readily under a
wide variety of conditions. However, my recommendation is to
always couple these with carbon filtration to avoid potential
issues from their organic side-products.

If you have issues with the use of soluble silicon sources –
because  of  your  initial  water  composition,  injector
limitations, cost, etc – and your media supports amending, I
would  also  suggest  considering  using  solid  amendments  to
supplement Si (watch this video I made for more information).
Amending can be a great choice, much more economical than
soluble Si supplementation.

Do  you  have  any  questions  about  Si  in  nutrient
solutions not addressed above? Feel free to leave a
comment and I might also add it to the post!

https://www.youtube.com/watch?v=_H-ynJKlb0o


Connecting  a  low  cost  TDR
moisture  content/EC/temp
sensor to a NodeMCUv3
I have discussed moisture content sensors extensively in the
past.  I  have  written  posts  about  the  use  of  capacitive
moisture  sensors  to  measure  volumetric  moisture  content,
including how to create sensor stations and how to calibrate
them. However, while capacitive moisture content sensors can
be a low cost alternative for low resolution monitoring of
moisture content, more precise applications require the use of
higher accuracy sensors, such as Time Domain Reflectometry
(TDR) sensors. In this post I am going to show you how to
connect a low cost microcontroller (NodeMCUv3) to a low cost
TDR moisture content sensor. Note, some of the product links
below are amazon affiliate links, which help support this blog
at no additional cost to you.

Diagram  showing  cable  connections  between  moisture  content
sensor NodeMCUv3 and communication board.
While popular sensors like Teros-12 sensors cost hundreds of
dollars, lower cost alternatives have been created by Chinese
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manufacturers.  Using  this  github  repository  by  git  user
Kromadg, I have been able to interface some of these low cost
TDR sensors with a NodeMCUv3. The NodeMCUv3 is a very low cost
microcontroller unit that you can get for less than 5 USD a
piece.  It  is  also  WiFi  enabled,  so  this  project  can  be
expanded to send data through Wifi to use in datalogging or
control  applications.  For  this  project  you  will  need  the
following things:

Micro USB cable1.
NodeMCUv32.
THC-S RS485 sensor (Make sure to get the THC-S model)3.
TTL to RS485 communication board4.
Breadboard  and  jumper  cables  to  make  connections  or5.
cables and a soldering kit to make final connections.

The above diagram shows you how to connect the sensor, TTL-to-
RS485 communication board and the NodeMCUv3. You will also
want to make sure you install the ESP Software serial library
in your Arduino IDE, as the normal Software Serial library
won’t work. You can do this by downloading the zipped library
from github and then using the Sketch->Include Library menu
option. Once you do so, you can upload the following code into
your NodeMCUv3.

#include <SoftwareSerial.h>
#include <Wire.h>

//  This  code  is  a  modification  of  the  code  found  here
(https://github.com/kromadg/soil-sensor)

#define RE D2
#define DE D3

const byte hum_temp_ec[8] = {0x01, 0x03, 0x00, 0x00, 0x00,
0x03, 0x05, 0xCB};
byte sensorResponse[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
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byte sensor_values[11];

SoftwareSerial mod(D6, D5); // RX, TX

void setup() {
    Serial.begin(115200);
    pinMode(RE, OUTPUT);
    pinMode(DE, OUTPUT);
    digitalWrite(RE, LOW);
    digitalWrite(DE, LOW);
    delay(1000);
    mod.begin(4800);
    delay(100);
}

void loop() {
    /************** Soil EC Reading *******************/
    digitalWrite(DE, HIGH);
    digitalWrite(RE, HIGH);
    memset(sensor_values, 0, sizeof(sensor_values));
    delay(100);
    if (mod.write(hum_temp_ec, sizeof(hum_temp_ec)) == 8) {
        digitalWrite(DE, LOW);
        digitalWrite(RE, LOW);
        for (byte i = 0; i < 12; i++) {
            sensorResponse[i] = mod.read();
            yield();
        }
    }

    delay(250);

    // get sensor response data
    float soil_hum = 0.1 * int(sensorResponse[3] << 8 |
sensorResponse[4]);
    float soil_temp = 0.1 * int(sensorResponse[5] << 8 |
sensorResponse[6]);
    int  soil_ec  =  int(sensorResponse[7]  <<  8  |
sensorResponse[8]);

    /*************  Calculations  and  sensor  corrections



*************/

    float as_read_ec = soil_ec;

    // This equation was obtained from calibration using
distilled water and a 1.1178mS/cm solution.
    soil_ec = 1.93*soil_ec - 270.8;
    soil_ec = soil_ec/(1.0+0.019*(soil_temp-25));

    // soil_temp was left the same because the Teros and
chinese sensor values are similar

    // quadratic aproximation
    // the teros bulk_permittivity was calculated from the
teros temperature, teros bulk ec and teros pwec by Hilhorst
2000 model
    float soil_apparent_dieletric_constant = 1.3088 + 0.1439 *
soil_hum + 0.0076 * soil_hum * soil_hum;

    float  soil_bulk_permittivity  =
soil_apparent_dieletric_constant;   ///  Hammed  2015
(apparent_dieletric_constant is the real part of permittivity)
    float soil_pore_permittivity = 80.3 - 0.37 * (soil_temp -
20); /// same as water 80.3 and corrected for temperature

    // converting bulk EC to pore water EC
    float soil_pw_ec;
    if (soil_bulk_permittivity > 4.1)
        soil_pw_ec = ((soil_pore_permittivity * soil_ec) /
(soil_bulk_permittivity  -  4.1)  /  1000);  ///  from  Hilhorst
2000.
    else
        soil_pw_ec = 0;

    Serial.print("Humidity:");
    Serial.print(soil_hum);
    Serial.print(",");
    Serial.print("Temperature:");
    Serial.print(soil_temp);
    Serial.print(",");
    Serial.print("EC:");



    Serial.print(soil_ec);
    Serial.print(",");
    Serial.print("READEC:");
    Serial.print(as_read_ec);
    Serial.print(",");
    Serial.print("pwEC:");
    Serial.print(soil_pw_ec);
    Serial.print(",");
    Serial.print("soil_bulk_permittivity:");
    Serial.println(soil_bulk_permittivity);
    delay(5000);
}

Note that RE and DE are not placed on digital pins 2 and 3, as
other pins in the NodeMCUv3 carry out other functions and the
board  will  not  initialize  if  it  has  the  RS485-to-TTL
communicator connected through those pins. The R0 and RI pins
are connected to digital pins D5 and D6, this is because in
the NodeMCUv3 pins D7 and D8 are used in serial communication
by the Serial swap command and therefore create conflicts if
you  use  them  with  SoftwareSerial.  The  above  digital  pin
distribution is one of the few that works well. Note that
connecting RE or DE to digital pin 4 also works, but this
means the blue LED on the NodeMCUv3 is powered on every time
there  is  serial  communication,  a  potentially  undesirable
effect if you’re interested in battery powering the device.

The board should now be printing all the measurements on your
serial connection, so you should be able to see the readings
through the Serial Monitor in the Arduino IDE. In the future I
will be sharing how to expand this code to include WiFi and
MQTT communication with a MyCodo server.

If you use this code please share your experience in the
comments below!



How  to  prepare  your  own
hypochlorous  acid  cleaner
using bleach
During the past couple of years, cleaning products based on
hypochlorous  acid  derived  from  electrolysis  have  become
popular in the hydroponic industry. This is because, in the
USA  –  per  40  CFR  §  180.940  –  hypochlorous  acid  products
containing less than 200 ppm of active chlorine are exempted
from  many  manufacturing  and  handling  requirements  and  are
therefore easy to produce and dispense to hydroponic growers.
While more dilute, the formulations produced can often be much
more stable than more concentrated products and still provide
satisfactory  cleaning  results  in  a  hydroponic  reservoir.
However, the products carry a lot of additional cost compared
to traditional sodium hypochlorite based cleaning products.
This is because more needs to be used – as they are more
dilute  –  and  the  products  themselves  are  often  much  more
expensive.

Graphic representation of hypochlorous acid
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In this post, I want to help you create a solution analogous
to  many  commercially  available,  electrolytically  derived
hypochlorous acid cleaners, using products that are easily
available and low cost. The resulting solution is – for all
intents  and  purposes  I  can  think  of  –  equivalent  to
electrochemically  derived  hypochlorous  acid,  since  the
hypochlorite ion becomes protonated at low pH, generating the
required substance during the preparation process. To create
this formulation, I relied on the following documents and the
scientific literature they referenced (1, 2, 3).

Important  note.  Hypochlorous  acid  is  unstable  in  highly
concentrated solutions. Increasing the concentration of the
formulation  below  significantly  can  lead  to  potentially
dangerous releases of chlorine gas when the pH is lowered.
Work  in  a  well  ventilated  area  and  do  not  exceed  the
concentration amounts recommended in this preparation. Work
responsibly  and  make  sure  to  read  all  the  MSDS  of  the
substances  used  and  use  appropriate  personal  protection
equipment.

These are the things you will need for the preparation :

Freshly bought Clorox (7.4%). The solution should not be1.
older than one week.
A 20 mL syringe.2.
Monopotassium Phosphate (MKP).3.
Sodium Chloride (table salt will do).4.
Magnesium Sulfate.5.
Sodium Tripolyphosphate.6.
A calibrated pH meter.7.
A scale to weigh salts, +/-0.1g.8.
A scale to weigh water +/-0.1kg9.
Distilled  or  RO  water  (tap  water  will  not  work).10.
Distilled is preferable.
Clean plastic, air-tight container (at least 1gal) to11.
store the resulting solution. The container should be
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opaque.

This is the procedure you should follow for the preparation of
the hypochlorous acid solution (values for ~1.2 gallon, can be
scaled up for larger amounts):

Calibrate your pH meter using fresh pH 4 and pH 7 buffer1.
solutions.
Fill the container with 3.6 kg of distilled water, this2.
will be referred to as the solution.
Weigh and add 0.5g of Sodium Chloride to the solution.3.
Stir until fully mixed.4.
Weigh and add 0.1g of Sodium tripolyphosphate to the5.
solution.
Stir until fully mixed.6.
Measure 11mL of Clorox and add it to the solution. If7.
you’re working with a bleach solution with concentration
other than 7.4%, multiply 11mL by 7.4 and divide by your
concentration to obtain the amount you should use in mL
(for example, if using a 6% bleach solution, you would
require 11*7.4/6 = 13.56mL).
Stir until fully mixed.8.
Weigh 0.5g of Monopotassium phosphate and add to the9.
solution.
Stir until fully mixed.10.
Measure the pH of the mix. If the pH is >7 slowly add11.
and fully mix small portions (~0.1g) of monopotassium
phosphate until the pH is in the 6.5-7 range. Take at
least 1 minute between additions to ensure the pH has
stabilized before adding more.
Weigh and add 3.5g of Magnesium sulfate to the solution12.
Stir until fully mixed.13.
Add 0.9kg of water.14.
Confirm final pH is in the 6-7 range, you can add more15.
monopotassium phosphate if needed to drop the pH.



This should provide you with a solution that is stable in the
medium term and has the active chlorine concentration of a
formulation  similar  to  products  like  Athena  Cleanse.  The
expected concentration of hypochlorous acid should be around
0.02%  (200ppm).  It  can  be  used  from  2  to  10mL/gal  of
hydroponic nutrient solution, depending on the severity of the
problems that need to be solved. For overall maintenance and
the solution of minor infections, dosages of 5mL/gal should be
more than adequate. The Magnesium Sulfate and Sodium Chloride
are added as stabilizing agents, while the mono potassium
phosphate is added as a pH buffering agent and the sodium
tripolyphosphate is a cleaning agent meant to keep irrigation
lines clean (it can be omitted if this is not a concern). Note
that the contributions of the mineral ions to a formulations
nutrition at the applied concentrations are negligible. 

Please do let me know if you have any questions about the
above preparation. If you have prepared it, please let us know
how it went in the comments below!

A  cost  analysis  of
fertilizers  for
hydroponic/soilless  growing
in 2022

Why fertilizer costs matter
Fertilizer can be one of the largest expenses of a hydroponic
growing  facility.  This  is  especially  true  when  boutique
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fertilizers  are  used,  instead  of  large  scale  commodity
fertilizers. The use of non-recirculating systems with high
nutrient concentrations also contributes heavily to high cost
fertilizer usage. A medium scale growing facility working with
boutique fertilizers can in some cases spend 2000-4000 USD per
day.  Even  when  using  some  of  the  most  cost  effective
solutions, a facility can still spend 4000 USD per day if they
use 20,000 gal/day with a nutrient line costing 0.2 USD/gal.

The above is a common combination of raw inputs and a standard
blended input

In 2022, the high cost of energy and high inflation have
increased raw fertilizer input costs to the highest point of
the past decade, making the problem of fertilizer costs even
more pressing. This has been specially the case for soluble
phosphate fertilizers which have, in some cases, seen costs
triple  from  the  start  of  2019.  This  is  because  soluble
phosphates were largely produced in Russia and alternative
sources  of  soluble  phosphates  had  a  hard  time  ramping  up
capacity  at  the  same  cost  level  as  could  be  previously
achieved.

https://scienceinhydroponics.com/wp-content/uploads/2022/08/image-10.png


To help people who are growing better assess their costs, I
seek to paint a clear picture of the current cost level of
commodity and boutique fertilizers as well as the cost levels
that can be achieved with preparation of custom solutions.

Price sources
The cost analysis focuses on the US market. The prices I
obtained for boutique fertilizers are from google searches
where I found the cheapest costs at the highest scale I could
find. For commodity fertilizers I used the price points of
customhydronutrients.com, which is a trust-worthy website for
the  purchase  of  fertilizer  inputs.  These  prices  are  also
accessible from small to large scales, so they do not require
large scales to be accessible. Boutique fertilizer companies
might  offer  larger  discounts  to  people  who  contact  them
directly to buy large amounts, but I did not use these prices
as they are not publicly available.

To make comparisons easier, I will express all costs as costs
per final gallon of nutrient solution, when prepared per the
directions of the manufacturer or to arrive at formulations
with  a  reasonable  composition  (formulations  that  can  grow
healthy,  high  yield  crops).  Please  also  note  that  I  only
considered  fertilizers  that  could  be  used  to  prepare
concentrated solutions to be used for injection, as these are
fundamental to large scale growing operations. I also only
considered  powdered  fertilizers  as  these  offer  the  lowest
cost.  Liquid  concentrated  fertilizers  –  which  are  often
substantially more expensive – were not considered.

For purposes of keeping the costs as low as possible I also
only considered the base products from boutique fertilizer
companies and did not consider the costs of any of their
additives (line cleaners, boosters, hormones, etc). Shipping
costs are also not considered here.

https://customhydronutrients.com/


Blended fertilizers
The easiest, most accessible fertilizers for most people will
be pre-blended fertilizers. Due to the proliferation of the
cannabis industry, most of the pre-blended fertilizers that
are sold to retail growers will be cannabis-centric and will
have a considerably higher price than the blends currently
used by the wider hydroponic industry.

Table comparing a couple of boutique lines with a standard
5-11-26 preparation using a Masterblend product and Calcium
nitrate.

The table above shows three representative fertilizer programs
for comparison. The Flora Pro series from General Hydroponics
was the lowest cost boutique fertilizer I could find, with a
total cost of 0.029 USD per gallon at the recommended dosing
rates by General Hydroponics. I also put the Athena line for
comparison, as they often portray themselves as a low cost
option for cannabis companies. Their cost is almost an order
of magnitude higher, at 0.183 USD/gal. From this analysis it
seems clear that their margins are much higher than those of
General Hydroponics although they can be substantially more
cost effective than other companies with even more expensive
products.

After  seeing  the  above  table,  it  is  clear  that  boutique
companies are not price competitive against formulations using
traditional  blended  fertilizers  from  the  agricultural
industry. A formulation using Masterblend 5-11-26 and Calcium
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nitrate, which could be perfectly adequate for the growth of
flowering  plants  during  their  vegetative  stage  or  purely
vegetative plants like basil, has a cost of 0.024 USD/gal.
Similar simple approaches using other blended products can be
used to achieve a variety of compositions at a similar price
tag.

Raw input fertilizers
It is also interesting to consider the case of raw fertilizer
inputs as this allows us to better think about formulations to
reduce  cost  and  also  calculate  whether  making  custom
fertilizers is worth the expense. The table below shows you
some commonly used bulk fertilizer inputs, their cost in USD
and the cost per pound of each one of the products.

Cost and cost per pound of each fertilizer input

Micronutrients are the most expensive per pound, but since
they  are  used  at  very  low  amounts,  their  total  cost
contribution to fertilizer solutions is often less than 0.002
USD/gal  (not  counting  the  iron).  The  cost  of  the  bulk
fertilizers  is  much  more  important  from  a  cost  impact
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perspective.  From  these  fertilizers,  potassium  inputs  are
often the most expensive. Both potassium nitrate, potassium
sulfate  and  monopotassium  phosphate  are  usually  large
contributors to the total price of a hydroponic formulation.
Soluble  silicon  amendments,  like  AgSil16H,  are  also  often
large contributors to the overall price of these formulations.
The above analysis also shows that Phosphoric acid is a very
expensive option for pH adjustments in hydroponics. For this
reason – and a few other reasons out of the scope of this post
– sulfuric acid should almost always be used.

Cost contribution of bulk fertilizers to a custom hydroponic
formulation.

The image above shows you the bulk contributions of all the
raw inputs used in a sample custom formulation. The total cost
of  this  formulation  is  around  0.016  USD/gal.  If  we
supplemented  Silicon  from  AgSil16H,  the  cost  of  this
formulation would likely increase to close to 0.025-0.03g/gal
depending on how much Si we would like to add. You can see
here that the highest bulk costs are indeed the monopotassium
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phosphate and the potassium nitrate, it is unlikely that we
would  be  able  to  diminish  this  cost  contribution
substantially,  as  this  is  the  true  bottom  line  of  the
fertilizer  industry.

For most of my clients, formulation costs in real life will
usually be between 0.01-0.03 USD/gal. The final cost will
depend on which bulk discounts are available at scale, which
plants the client is growing, what the cost of shipping the
fertilizer is and which additional amendments beyond simple
raw fertilization we choose to use. Sometimes, by using the
nutrients already present in the water, substantial additional
savings are possible with custom formulations.

Note that the above raw input analysis does not include the
cost of labor to prepare the concentrated nutrients needed for
injection. If a worker needs to spend a couple of hours per
week mixing 25 gallons of each fertilizer then this, at 20
USD/hour, would likely increase the cost of the fertilizer by
around  2-5%.  Since  workers  can  often  mix  batches  of
concentrated  solutions  that  end  up  creating  thousands  of
gallons of solution, the labor cost needed to mix fertilizers
is often not meaningful relative to the overall cost of the
inputs.

Balance between complexity and cost
From the above, it is clear that making your own fertilizer
has the lowest cost, even at a small scale. However, it does
add a substantial level of complexity to an operation and
exposes  the  operation  to  a  variety  of  potential  mistakes
dealing  with  preparation.  A  careful  consideration  of  the
advantages and disadvantages of mixing your fertilizer needs
to be made. For large facilities, I believe this to be a no-
brainer. At scale, it almost certainly makes sense to mix your
own fertilizers.

However, it is true that at a medium scale, a grower might



benefit from not doing their own mixing, as this simplifies
their operation and allows them to focus on growing great
plants while they grow. In this case, you can certainly –
regardless of the plant you’re growing – create a formulation
based on a widely available agricultural industry blend with
perhaps  one  or  two  raw  inputs,  to  achieve  a  highly  cost
effective formulation.

Of course, there is also an additional cost to fertilizer
formulation, which – per the prices charged by myself and
other colleagues – might cost you from hundreds to thousands
of dollars depending on complexity. If you do not want to
incur this cost, then you should bear in mind you will pay a
perpetually higher price in your fertilizers, to a company
that has done the formulation work for you.

At a large scale, you definitely do not want to go with a
formulation that reduces the yield or quality of your plant
product,  so  –  if  you  lack  the  experience  to  do  these
formulations yourself – always make sure to hire someone who
knows what they are doing.

In  the  simplest  case,  a  formulation  schedule  of  an
agricultural  preblended  product  –  using  for  example  the
Masterblend  5-11-26  mentioned  above  –  adjusted  to  your
situation might lower your costs by an order of magnitude from
an expensive boutique shop at a minimal increase in complexity
and low formulation costs. Of course you can always make your
own Masterblend proxy as a first step when you move to fully
custom formulations. If it is not possible to use these types
of blends – due to for example your water composition – a
fully custom formulation will be required.

There  is  no  reason  to  pay  even

https://www.youtube.com/watch?v=f9pkRFsVVgo
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higher prices
People in the traditional large scale hydroponic industry have
been growing at very cost effective fertilizer prices for
decades.  If  you  are  a  small,  medium  or  even  large  scale
grower, there is no reason why your fertilizer costs should be
astronomically high. There are no reasons to perpetually pay
high margins to fertilizer companies and there is no reason
why you shouldn’t take advantage of the easiest cost savings
that can be achieved with products that are already available
to the bulk agricultural industry. Now that the raw fertilizer
input costs are even higher, it is more important than ever to
go to lower cost methods to achieve your desired hydroponic
formulations.

If you want to learn how to make your own fertilizers, then I
advice you visit my youtube channel or read my blog articles
on making your own fertilizers from raw inputs.

Are you using boutique fertilizers? Are you mixing your own?
Please  let  us  know  about  your  experience  in  the  comments
below!

How to reuse your coco coir
in soilless growing

Why reuse media
Buying new media and spending labor to mix, expand, and even
amend  it  can  be  a  costly  process  for  growing  facilities.
Dumping  media  also  involves  going  through  a  composting
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process, wasting nutrients that are already present in that
media when it is thrown away. However, media in hydroponics
serves a mostly structural role and there are no fundamental
reasons why media like coco cannot be recycled and used in
multiple crop cycles.

Coco  coir  commonly  used  as  a  substrate  in  soilless
agriculture.

By  reusing  media,  a  grower  can  substantially  reduce
operational costs. This is because the media itself often
contains an important amount of surplus nutrition and the
roots and other organic components left behind by previous
plants can also be used by new crops to sustain their growth.
These added decomposing root structures also reduce channeling
in  the  media  and  help  improve  its  water  retention  as  a
function of time. After a media like coco is reused several
times,  the  coco  also  degrades  and  becomes  finer,  further
improving water retention.

Why media is often not reused
Reusing media is not without peril. When media is pristine, it
is more predictable. You know its basic composition and you
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can feed it the same set of nutrients and hope to obtain very
similar  results.  Nonetheless,  after  media  goes  through  a
growing  cycle,  its  chemical  composition  changes  and  the
starting point becomes much more variable. This means that a
grower needs to somehow adjust nutrition to the changes in
composition, which can often make it difficult for the crop to
achieve consistent results.

If a grower reuses media but tries to feed as if the media was
new, then problems with overaccumulation of nutrients in the
media will happen and it will be hard for the grower to obtain
reliable results. Reusing media requires a different approach
to crop nutrition which scares people away because it strays
from  what  nutrient  companies  and  normal  growing  practices
require. However we will now learn how media is chemically
affected by cultivation and how we can take steps to reduce
these effects and then successfully reuse it.

Media  composition  after  a  normal
crop
In traditional coco growing, fertilizer regimes will tend to
add a lot of nutrients to the coco through the growing cycle.
From  these  nutrients,  sulfates,  phosphates,  calcium  and
magnesium will tend to aggressively accumulate in the media
while  nutrients  that  are  more  soluble  like  nitrate  and
potassium will tend to accumulate to a lesser extent or be
easier to remove.



Analysis of used coco from a tomato crop. This analysis uses a
DTAP + ammonium acetate process to extract all nutrients from
the media. This media had a runoff pH of 6 with an EC of 3.0
mS/cm.

The above image shows you the analysis results of a coco
sample that was used to grow a tomato crop. In this analysis,
the media is extracted exhaustively using a chelating agent,
to ensure that we can get a good idea of all the cations that
are present in the media. The chelating agent overcomes the
cation exchange capacity of the media, forcing all the cations
out – fundamentally exchanging them for sodium or ammonium –
and showing you the limits of what could be extracted from the
media by the plant.

In this case, the amount of Ca is so high, that it can
fundamentally  provide  most  of  the  Ca  required  by  a  plant
through its next growing period. Since most of this Ca is
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going to be present as calcium sulfate and phosphate, it will
only be removed quite slowly from the root zone by leachate.
The amount of potassium is also quite high, but this potassium
is going to go out of the media quite easily and is only
likely to last for a short period of time.

In addition to the above mineral content, coco that is reused
will  often  contain  a  lot  of  plant  material,  roots  that
remained from the previous crop, so the subsequent reuse of
the media needs to incorporate adequate enzymatic treatments
to help breakdown these organics and ensure that pathogens are
not going to be able to use these sources of carbon as an
anchor point to attack our plants.

Steps before the crop ends
Because of the above, one of the first steps we need to carry
out if we want to reuse media is to ensure that the media is
flushed during the last week of crop usage with plain water,
such that we can get most of the highly soluble nutrients out
of  the  media  so  that  we  don’t  need  to  deal  with  those
nutrients in our calculations. This will remove most of the
nitrogen and potassium from the above analysis, giving us
media that is easier to use in our next crop.

In addition to this, we will also be preparing our media for
the digestion of the root material. Before the last week of
cultivation, we will add pondzyme to our plain water flushing
at a rate of 0.1g/gal, such that we can get a good amount of
enzymes into our media. We should also add some beneficial
microbes, like these probiotics, at 0.25g/gal, so that we can
get some microbial life into the media that will help us
decompose the roots after the plants that are currently in the
media will be removed.

https://amzn.to/3QR3u6g
https://amzn.to/3wuxEnP


How to manage the new crop
Once the crop ends, we will remove the main root ball from the
media. There is no need to make an effort to remove all plant
material as this would add a lot of labor costs to media
reuse. The media should then be allowed to dry, such that the
roots that are left behind can then be easily broken up before
new plants are placed in the media. Machines to breakup any
roots are ideal, although this can also be done manually and
easily once all the root material in the media is dead and the
roots lose their capacity to hold their structure together.

Once we have dry coco with the root structures broken up, we
can then fill up new bags to reuse this media for our next
crop. After doing a lot of media analysis and working with
several people reusing media, I have found this method works
well. If we performed the flushing steps as instructed before,
then we can use the media runoff EC as a way to evaluate the
type of nutrition needed.

While the runoff EC remains above 1.5mS/cm, we feed a solution
containing  only  potassium  nitrate  and  micronutrients  (no
phosphorus, sulfates, calcium or magnesium) at 2g/gal of KNO3 +
micros. After the runoff EC drops below 1.5mS/cm we return to
feeding our normal regime. The idea here is that while the
media is above 1.5mS/cm the plant can take all the nutrients
it needs from the media, but once the media EC drops below
1.5mS/cm, the media is deprived from these nutrients and we
need to provide them again for the plant.

Bear in mind that while the nitrogen content of the above feed
seems low (just 73 ppm of N from NO3) there is additional
nitrogen that is coming from the decomposition of the organic
materials left in the media, which can supplement the nitrogen
needs of the plants. Despite the flushing on the last week,
there is always some nitrate left from the previous crop. I
have found that this is enough to support the plant until the



runoff drops below our 1.5mS/cm threshold. After this point,
the plant can be grown with its normal nutrition.

Simple is better
Although  you  would  ideally  want  to  find  exactly  which
nutrients are missing or present after each batch of media and
adjust your nutrition such that you can get your plants the
ideal  nutrient  composition  every  time,  this  is  not  cost
effective or required in practice to obtain healthy plant
growth. A media like coco possesses a good degree of nutrient
buffering capacity (due to it’s high cation exchange capacity
and how much nutrition is accumulated after a crop cycle), so
it can provide the plants the nutrition of certain nutrients
that they need as long as the nutrients that are most easily
leached (K and N) are provided to some degree.

The above strategy is simple and can achieve good results for
most large crops that are grown using ample nutrients within
their normal nutrient formulations. It is true that this might
not  work  for  absolutely  all  cases  (or  might  need  some
adjustments depending on media volumes) but I’ve found out it
is a great strategy that avoids high analysis costs and the
need to create very custom nutrient solutions.

Do you reuse your coco? Let us know which strategy you use and
what you think about my strategy!

Are  Iron  chelates  of
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humic/fulvic acids better or
worse than synthetics?

Why Fe nutrition is problematic
Plants need substantial amounts of iron to thrive. However,
iron is a finicky element, and will react with many substances
to form solids that are unavailable for plant uptake. This is
a specially common process under high pH, where iron can form
insoluble carbonates, hydroxides, oxides, phosphates and even
silicates. For this reason, plant scientists have – for the
better part of the last 100 years – looked for ways to make Fe
more  available  to  plants,  while  preventing  the  need  for
strategies that aim to lower the pH of the soil, which can be
very costly when large amounts of soil need to be amended.

The image above is taken from this paper on Fe deficiencies.

In hydroponics, the situation is not much better. While we can
add as much Fe as we want to the hydroponic solution, the
above processes still happen and the use of simple Fe salts
(such  as  iron  nitrate  or  iron  sulfate)  can  lead  to  Fe
deficiencies  as  the  iron  falls  out  of  solution.  This  can
happen  quickly  in  root  zones  where  plants  aggressively
increase the pH of solutions through heavy nitrate uptake.
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For a better understanding of the basics of soil interactions
with microbes, plants and the overall Fe cycle, I suggest
reading this review (6).

Synthetic chelates to the rescue
The above problems were alleviated by the introduction of
synthetic iron chelates in the mid 20th century. The chelating
agents are organic moieties that can wrap around the naked
metal ions, binding to their coordination sites. This kills
their reactivity and ensures that they do not react with any
of the substances that would cause them to become unavailable
to plants. Plants can directly uptake the chelates, take the
iron and push the chelate back into solution, or they can
destroy  the  chelate  and  use  its  carbon  within  their
metabolism.

Chelates can bind Fe very strongly though, and this is not
desirable  for  some  plants  that  do  not  have  the  enzymatic
machinery required to open these “molecular cages”. Studies
with monocots (1) – which are grasses – have often found that
these  plants  respond  poorly  to  Fe  supplementation  with
molecules like Fe(EDDHA), a very powerful chelate. So powerful
in fact, that not even the plants can get the Fe out. For
these plants, weaker chelates often offer better results, even
at higher pH values.

Another problem is that many of the synthetic chelates are not
very good at high pH values. When the pH reaches values higher
than  7.5,  chelates  like  EDTA  and  DTPA  can  have  problems
competing with the much more strongly insoluble salts that
form at these pH values. The chelated forms are always in
equilibrium  with  the  non-chelated  forms  and  the  minuscule
amount  of  the  non-chelated  form  drops  so  quickly  out  of
solution that the entire chelate population can be depleted
quite quickly. (2)

Chelates that respond well to high pH values, like EDDHA, are
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often much more expensive. In the case of EDDHA, the presence
of a lot of isomers of the EDDHA molecule that are weaker
chelates, also creates problems with quality control and with
the overall strength of each particular EDDHA source. The
EDDHA is only as good as its purification process, which makes
good sources even more expensive (3, 4).

An additional concern is the oxidation state of the Fe. While

Fe chelates are usually prepared using ferrous iron (Fe2+),
these iron chelates are quickly oxidized in solution to their

ferric iron (Fe3+) counterparts, especially when the solution

is aerated to maintain high levels of oxygen. Since Fe3+ is
both more tightly bound to chelates and more reactive when
free – so more toxic when taken up without reduction – plants

can have an even harder time mining Fe3+ out of chelates (5,
7).

Then there are naturally occurring
chelates
There are many organic molecules that can form bonds with the
coordination  sites  of  Fe  ions.  Some  of  the  reviews  cited
before go into some depth on the different groups of organic
molecules that are excreted by both plants and microorganisms
as a repose to Fe deficiency that can lead to improved Fe
transport  into  plants.  Some  of  these  compounds  are  also
reductive in nature, such that they can not only transport the
Fe, but reduce it to its ferrous form such that it can be
handled more easily by plants.

Among the organic compounds that can be used for Fe chelation,
humic and fulvic acids have attracted attention, as they can
be obtained at significantly low costs and are approved for
organic usage under several regulations. You can read more
about these substances in some of my previous posts about them
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(8, 9). In particular, humic acids are more abundant and are
formed by larger and more complex molecules compared to fulvic
acids.

The ability of these substances to chelate Fe is much weaker
than that of synthetic chelates. The pKb shows us the strength
of the binding equilibrium of the chelate with the free metal
ion (you can see the values for many metals and chelating
agents here). The value for EDTA is 21.5 while that of most
humic and fulvic acids is in the 4-6 range (10). This is a
logarithmic scale, so the difference in binding strength is
enormous. To put things into perspective, this difference in
binding strength is of the same magnitude as the difference
between the mass of a grain of sand and a cruise ship.

Comparing  synthetic  and
fulvic/humic acid chelates
There aren’t many studies comparing synthetic and humic/fulvic
acid chelates. One of the most explicit ones (11) compares
solutions of Fe sulfate (which we can consider unchelated) and
Fe(EDDHA) after additions of fulvic or humic acids in the
growth  of  Pistachio  plants.  At  pH  values  close  to  those
generally  used  in  hydroponics  (6.5)  there  is  hardly  any
difference between any of the treatments while at higher pH
values we have substantially better uptake of Fe in both the
EDDHA and unchelated iron treatments when supplemented with
either fulvic acid or humic acid.
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Images at pH 8.5 of Fe in shoots from the Pistachio study (11)

The idea of using humic acids as a compliment of traditional
chelate based fertilization to alleviate high fertilization
costs  has  also  been  studied  in  citrus  (13).  This  study
confirms  some  of  the  findings  of  the  previous  one,  where
additions  of  humic  acids  to  solutions  already  containing
Fe(EDDHA) provided a more beneficial role than simply the use
of  the  pure  humic  acid  substances  or  pure  Fe(EDDHA)
fertilization. Another study on citrus (14) showed that humic
acid applications could in fact provide Fe supplementation in
calcareous soils (these are soils with high pH values). This
shows  how  humic  acid  fertilization  can  rival  Fe-EDDHA
fertilization.

In another study of leonardite iron humate sources and EDDHA
in soybean roots (12) it is apparent that accumulation of Fe
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in  shoots  and  roots  is  much  worse  under  the  humic  acid
treatments. In the conclusions of the paper, it is highlighted
that the high molecular mass of the leonardite constituents
might block the roots of the soybean plants, therefore making
it difficult for the plant to transport Fe. However, this
study does show that the accumulation of these humic acids in
the root zone does promote a decrease in the expression of
genes that create Fe transporters and Fe reducing enzymes,
pointing that the plant is indeed under less Fe deficiency
stress. Another important point is that cycling the humic acid
application  promotes  the  absorption  of  accumulated  humic
acids, cleaning the roots and allowing for better transport of
the Fe in the roots.

In  a  separate  study  with  humic  acid  +  FeSO4  applications
compared to Fe(EDDHA) in sweet cherry (13) it was found that
the  humic  acid,  when  supplemented  with  unchelated  iron,
increased Fe tissue as much as the Fe(EDDHA) applications.
This was consistent across two separate years, with the second
year showing a statistically significant increase of the humic
acid treatment over the Fe(EDDHA).

How does this work
An  interesting  point  –  as  I  mentioned  before  –  is  that
humic/fulvic acids are incredibly weak chelating agents. This
means that they should release their Fe to the bulk of the
solution, which should lead to Fe depletion and deficiencies,
as the Fe precipitating mechanisms are thermodynamically much
more stable. However this is not what we consistently observe
in the studies of Fe nutrition that try to use humic/fulvic
acids,  either  with  or  without  the  presence  of  additional
synthetic chelates.

The reason seems to be related with the kinetics of Fe release
from these substances. While the stability constants of the
chelates  are  weak  –  therefore  they  will  release  and

https://link.springer.com/article/10.1007/s10341-016-0300-z/tables/2


precipitate in the long term – the bulkiness of the ligands
and the complex structures surrounding the metals, makes it
hard  for  the  metal  to  actually  escape  from  the  chelate
structures around it. However, the fact that the bonding is
thermodynamically weak, ensures that the metal can be easily
transported once it leaves the organic chelate structure.

Another point is that humic/fulvic substances are reductive in

nature, which means that they will protect Fe2+ from oxidation
by either microbes or oxygen dissolved in solution. They are

also sometimes able to reduce Fe3+ present in solution back to

Fe2+, which can help with the uptake of this Fe by the plant’s
root system.

The nature of the above structures and their reductive power
depends fundamentally on the actual humic/fulvic acid used, so
– as with all cases pertaining to fulvic/humic substances –
the source you use will play a big role in determining the
final outcome you get.

What chelates are the best?
Current research shows that Fe(EDDHA) and similar chelates,
despite their high stability constants, are not perfect. While
they  can  provide  ample  iron  for  dicots  and  can  cure  Fe
deficiencies in the large majority of cases for these plants,
these strong chelates are often very expensive and their use
as sole Fe sources might be impractical for many cases in
traditional agriculture and hydroponics/soilless growing.

The  use  of  humic/fulvic  acids  complimented  with  either
unchelated Fe or with some lower proportion of stronger iron
chelates, seems to be a better overall choice in terms of both
plant uptake and economic expense. As shown by several studies
mentioned in this post, the effect of humic/fulvic acids and
synthetic chelates might actually be synergistic, with both
providing different advantages that can be complimentary in



hydroponic solutions. These humic/fulvic acid solutions might
also be much more favorable for monocot species, where the use
of highly stable Fe(EDDHA) chelating agents does not cure
deficiency symptoms.

The take away here is that chemical chelate strength is not
the  only  thing  to  consider.  The  kinetics  of  the  chelate
dissociations, as well as how the chelates interact with the
root system, for example how the plant can actually take the
Fe outside of the chelating system, are all very important to
establish  whether  the  Fe  is  effectively  absorbed  and
transported  by  the  plants.

Please  note  that  the  topic  of  Fe  nutrition  is  extremely
extensive  and  while  the  above  is  intended  to  be  a  short
introduction to the topic of humic/fulvic acids and how they
compare to synthetic chelates, it is by no means an exhaustive
literature review.

Are you using fulvic or humic acids for Fe nutrition? Let us
know what your experience is in the comments below.

A guide to different pH up
options in hydroponics

When is pH up needed?
The control of pH in hydroponics is critical. Most commonly,
we need to decrease the pH of our solutions as most nutrients
will  initially  be  at  a  higher  than  desired  pH.  This  is
especially true when tap water or silicates are used, as both
of these inputs will increase the overall pH of hydroponic
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nutrients after they are prepared. In recirculating systems,
pH will also tend to drift up due to the charge imbalance
created by the high active uptake of nitrate ions carried out
by most plant species. For a discussion on pH down options,
please read my previous post on this topic.

However,  there  are  certain  circumstances  where  the  pH  of
hydroponic solutions needs to be increased. This can happen
when  tap  water  or  silicates  are  not  used  or  when  plants
decrease  pH  due  to  an  aggressive  uptake  of  some  cations.
Plants like tomatoes can do this when grown in solutions with
high potassium contributions, as they will actively uptake
these nutrients to the point of changing pH balance. Excess
ammonium  can  be  another  common  cause  for  pH  decreases  in
hydroponic solutions that require the use of pH up solutions.

Potassium hydroxide pellets, the most powerful pH up option
available to growers

With this in mind, let’s discuss the pH up options that are
available in hydroponics. I only considered substances that
are soluble enough to create concentrated solutions, such that
they can be used with injector systems.
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pH up options

Sodium or potassium hydroxide (NaOH, KOH)
These are the strongest. They are low cost, can be used to
prepare highly concentrated solutions and will increase the pH
most effectively. They are however unstable as a function of
time because they react with carbon dioxide from the air to
form sodium or potassium carbonates. This means that their
concentrated solutions need to be kept in airtight containers
and that their basic power will decrease with time if this is
not the case. Additionally, these hydroxides are extremely
corrosive and their powder is an important health hazard.
Dissolving them in water also generates very large amounts of
heat – sometimes even boiling the water – which makes their
usage more dangerous. Although desirable when basic power is
the most important short term concern, I recommend to avoid
them giving their PPE requirements and the lack of long term
stability.

When these hydroxides are used, potassium hydroxide is the
recommended form, as potassium hydroxide is both more basic
and a plant nutrient, while excess sodium can cause problems
with plant development. However, sodium hydroxide might be
more desirable if it can be obtained at a particularly low
price and small additions of sodium are not a concern.

Potassium silicate
This is a soluble form of silicon that is stable at high pH
values. While solutions of potassium silicate by itself can be
prepared and used as a pH up option, it is usually stabilized
with a small addition of potassium hydroxide to take the pH of
solutions to the 11-12 range. Potassium silicate contributes
both potassium and silicon to hydroponic solutions – both
important nutrients – and its use can be more beneficial than
the use of pure potassium hydroxide. While silicates are less



basic and more mass is required for the same pH buffering
effect, the preparation and handling can often be much simpler
than those of potassium hydroxide.

Note that potassium silicate solutions are also unstable when
left in open air, as they will also react with atmospheric
carbon dioxide to generate potassium carbonate. It is also
worth noting that not all potassium silicates are the same,
when  looking  for  a  highly  soluble  potassium  silicate  for
hydroponics, make sure you get potassium silicates that have
higher  K/Si  ratios.  Usually  ratios  of  at  least  1.05  are
required  (make  sure  you  convert  both  K  and  Si  to  their
elemental forms, as most of these products report K as K2O and
Si as SiO2).

Potassium carbonate (K2CO3)
This basic salt is stable in air, has less demanding PPE
requirements and can also be used to prepare concentrated
solutions  (more  than  1g  of  potassium  carbonate  can  be
dissolved per mL of water). Because of its lower basicity
compared to potassium hydroxide, more of it also needs to be
used to increase the pH of a hydroponic solution. However,
solutions of it are stable, so there is no concern for their
stability or changes to its basic power.

Another  advantage  given  by  potassium  carbonate  is  that  –
contrary to the previous two examples – it does increase the
buffering capacity of the solution against pH increases, due
to  the  addition  of  carbonate  to  the  solution.  As  carbon
dioxide is lost to the air at the pH used in hydroponics, the
pH of the solutions tends to drift up, this means that the
carbonate addition makes the pH more stable in solutions where
the pH is being constantly pushed down. This is all part of
the carbonic acid/bicarbonate equilibrium, which also helps
chemically buffer the solutions at the pH used in hydroponics.

Overall potassium carbonate is one of my favorite choices when



there is a downward drift of pH in recirculating solutions.

Potassium phosphate (K3PO4)
Another weak base, potassium phosphate, can be used to prepare
concentrated  solutions  and  increase  the  pH  in  hydroponic
solutions. While its solubility and basicity are lower than
that  of  potassium  carbonate,  it  does  provide  additional
phosphorus  that  can  buffer  the  pH  of  the  solution.  This
happens because mono and dibasic phosphate ions are anions
that be taken up by plants, therefore decreasing the pH. While
phosphates can help chemically buffer the hydroponic solution
against pH increases, for decreases the phosphate buffer is
ineffective as the pKa of the relevant equilibrium is 7.2.

An issue with potassium phosphate is that it provides large
contributions of K to solution. These potassium additions can
be quite counter productive if the cause of the pH drift
towards the downside is related to potassium uptake.

Potassium Citrate/Lactate/Acetate
Basic organic salts of potassium can also be used to increase
the pH. These are all much weaker than even the carbonate and
phosphate bases mentioned above and relatively large additions
are  required  for  even  a  moderate  immediate  effect  in  pH.
However, since these anions are actively taken up by microbes,
the microbial metabolism of these ions will create a longer
term effect on pH. A moderate addition of potassium citrate
can only cause a small increase of pH in the short term, with
a larger increase happening during the following 24 hours.

A  disadvantage  is  that  these  anions  can  also  lead  to
explosions in bad microbe populations if the environment does
not have an adequate microbial population. When these salts
are used, adequate microbial inoculations need to be carried
out to ensure that the microbes that will proliferate will not
be pathogenic in nature.



Protein Hydrolysates
While hydrolysates themselves can have an acidic pH when put
in solution, their microbial metabolism aggressively increases
the pH of solutions in the medium term. This means that these
hydrolysates should not be used for immediate pH adjusting, as
they will tend to decrease pH further in the very short term,
but they can be used as a more long term management option.

As with the above organic salts, their use also requires the
presence  of  adequate  microbial  life.  If  you  neglect  to
properly  inoculate  the  media  before  their  addition,  then
pathogens  can  also  make  use  of  these  amino  acids  to
proliferate.

Combinations are also possible
As  with  the  case  of  pH  down  options,  some  of  the  best
solutions  for  a  problem  come  when  several  of  the  above
solutions are combined. For example the use of potassium rich
pH up solutions in microbe containing soilless media can often
cause pH drift issues related with potassium to worsen. For
this reason, it can be desirable in these cases to prepare pH
up solutions that include protein. This means that you reduce
the pH fast but then you have a residual effect from protein
metabolism that helps you fight the pH increase as a function
of time.

However not all pH up drifts are caused by potassium, as in
the case of plants where pH up drift happens due to low
nitrate uptake (for example some flowering plants that stop
producing a lot of additional leaves during their flowering
stage). In these cases potassium based pH up solutions cause
no additional issues and combinations of potassium carbonate
and potassium phosphate might be best.



Choose according to your goals
As  in  most  cases,  the  best  solution  will  depend  on  your
circumstances. Think about whether you’re just adjusting the
pH of your initial solutions or whether you need to compensate
for a constant drift, whether microbial life is present and
whether  you’re  concerned  with  the  accumulation  of  any
substances  in  a  recirculating  solution.  Once  you  consider
these factors and review the above solutions, you should be
able to find the pH up solution that is better suited to your
particular needs.

Are you using a pH up? Let us know why and which one you’re
using in the comments below!

How  to  make  a  stabilized
ortho-silicic  acid  solution
with only 3 inputs
In  a  previous  post,  which  you  can  read  here,  I  gave  a
procedure for the preparation of a stabilized mono-silicic
acid using from potassium silicate. The procedure called for
the usage of several stabilizing agents, including carnitine
and propylene glycol, with phosphoric acid being used as the
acidifying agent.

After trying this synthesis myself and talking with other
people  who  tried  this  process,  it  seemed  clear  that  the
success  rate  was  low  and  that  the  process  was  just  too
complicated  and  imprecise  for  most  people  to  carry  out
(especially for the patience needed for the addition of the
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solid  potassium  silicate).  There  is  a  detailed  discussion
about this procedure, as well as mono-silicic acid synthesis
in this forum thread.

Stabilized  mono-silicic  acid  solution  created  using  the
procedure below. Note that mono-silicic acid and ortho-silicic
acid are the exact same thing, they are two names for the same
molecule (H4SiO4). Another molecule with the same nomenclature
is ortho-phosphoric acid (H3PO4), which is also called mono-
phosphoric acid.

Given these issues, I decided to look for a potentially easier
synthesis  starting  from  cheaper,  more  readily  available
materials,  avoiding  the  use  of  Propylene  Glycol  (which
concerned  some  people)  and  trying  to  simplify  the  steps
involved.

The procedure I came up with simplifies the process by relying
on  the  interaction  of  silicic  acid  with  sorbitol  as  a
stabilizing  agent.  This  stabilization  process  is  well
documented in the literature (see here) and is caused by the
formation of highly stable polyolate complexes between mono-
silicic acid and molecules like sorbitol. These complexes form
because molecules like sorbitol have adjacent hydroxy groups
in what we call a threo configuration. These do not exist in
sugars like glucose or sucrose, reason why these do not work
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for this process.

The raw inputs you will need are as followed

A potassium silicate with a high K/Si ratio, such as1.
AgSil 16H. You can also use a liquid potassium silicate,
such as Grotek Pro-silicate.
Sulfuric Acid (>90%)2.
Sorbitol3.
Distilled water.4.

If  using  AgSil16H  follow  this  process  first.  In  a  1000mL
beaker, add 70g of AgSil16H and 450mL of distilled water. Stir
– ideally with magnetic stirring – until the silicate has all
dissolved. This will be the silicate solution.

This is now the procedure to prepare the stabilized ortho-
silicic acid solution (700mL):

In a 1000mL beaker, add 500mL of distilled water and a1.
magnetic stirrer.
Weigh 200g of Sorbitol and add them to the water.2.
Start the magnetic stirring.3.
After the sorbitol has completely dissolved, during a4.
period of 30 seconds add 100mL of the silicate solution
(either  as  prepared  above  or  a  commercial  silicate
equivalent to the Grotek suggestions above (around 7.5%
Si as SiO2)).
Stir the silicate and sorbitol solution for 10 minutes.5.
Add 10mL of >90% sulfuric acid and stir for 5 minutes.6.
The pH should now be lower than 2.
The solution can now be stored.7.

The above process creates a stable mono-silicic acid solution
that has an Si concentration of around 1% of Si as SiO2 and
around 0.6% K as K2O. Used at 8mL gal it should provide around
20ppm of Si As SiO2 and 10 ppm of K.

A  previous  version  of  this  procedure  used  50mL  of  80-85%

https://customhydronutrients.com/AgSil-16H-Potassium-Silicate-fertilizer-50-lb_p_23063.html
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phosphoric acid. However, phosphoric acid seems to generate
solutions that are unstable after 1-2 weeks of preparation.
Solutions prepared per the above process have been confirmed
to be stable for at least 1 month.

Did you try it? How were your results? Let us know in the
comments below!

A  one-part  hydroponic
nutrient formulation for very
hard water

What is water hardness?
There are many parameters that determine the quality of a
water source. Water that has a composition closer to distilled
water is considered of a higher quality, while water with many
dissolved solids or high turbidity is considered low quality.
Calcium carbonate, magnesium carbonate, calcium sulfate and
calcium silicate are some of the most common minerals that get
dissolved  into  water  as  it  runs  through  river  beds  and
underground aquifers. The carbonates and silicates will make
water more basic, will increase the water’s buffering capacity
and will also increase the amount of magnesium and calcium
present in the water.

Water hardness is determined experimentally by measuring the
amount  of  Calcium  and  Magnesium  in  solution  using  a
colorimetric  titration  with  EDTA.  Although  both  Calcium
hardness  (specific  amount  of  Ca)  and  Magnesium  hardness
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(specific amount of Mg) are measured, total water hardness
(the sum of both) is the usually reported value. The result is
often expressed as mg/L of CaCO3, telling us how much CaCO3 we
would require to get a solution that gave the same result in
the EDTA titration.

The Calcium and Magnesium present in water sources with high
hardness is fully available to plants – once the pH is reduced
to the pH used in hydroponics – and it is therefore critical
to take these into account when formulating nutrients using
these water sources. It is a common myth that these Ca and Mg
are unavailable, this is not true.

What about alkalinity?
Water alkalinity tells us the equivalent amount of calcium
carbonate we would need to add to distilled water, to get
water  that  has  the  same  pH  and  buffering  capacity.  An
alkalinity value of 100 mg/L of CaCO3 does not mean that the
water has this amount of carbonate, but it means that the
water  behaves  with  some  of  the  chemical  properties  of  a
solution containing 100mg/L of CaCO3. In this particular case,
it means that the water requires the same amount of acid to be
titrated as a solution that has 100mg/L of CaCO3.

Water sources with high hardness will also tend to have high
alkalinity as the main salts that dissolve in the water are
magnesium and calcium carbonates. Since these carbonates need
to be neutralized to create a hydroponic solution suitable to
plants, the anion contribution of the acid that we will use to
perform the neutralization needs to be accounted for by the
nutrient formulation.

An example using Valencia, Spain
Valencia,  in  the  Mediterranean  Spanish  coast  (my  current
home), has particularly bad water. Its water has both high



alkalinity  and  high  hardness,  complicating  its  use  in
hydroponics. You can see some of the characteristics of the
water below (taken from this analysis):

Name Value Unit

Calcium 136 ppm

Magnesium 42 ppm

Chloride 103 ppm

Sulfur 89 ppm

pH 7.6

Alkalinity 240 mg/L of CaCO3

Typical water quality values for water in Valencia, Spain.
Hard water creates several problems. Since Calcium nitrate is
one  of  the  most  common  sources  of  Nitrogen  used  in
hydroponics, how can we avoid using Ca nitrate? Since we have
more than enough. Also, how can we neutralize the input water
so that we can make effective use of all the nutrients in it
without overly increasing any nutrient, like P, N or S, by
using too much of some mineral acids?

Creating  a  one-part  solution  for
very hard water
HydroBuddy allows us to input the characteristics of the input
water into the program so that we can work around them while
designing  nutrient  solutions.  To  get  around  the  above
mentioned problems – but still ensure I could easily buy all
the required chemicals – I decided to use a list of commonly
available  fertilizers.  I  used  Calcium  Nitrate,  Magnesium
Nitrate, Potassium Nitrate, Phosphoric acid (85%) and a micro
nutrient mix called Force Mix Eco (to simplify the mixing
process). This micronutrient mix is only available to people
in the EU.

https://www.emivasa.es/Sites/2/Docs/calidad%20del%20agua/20190101_Analisis%20tipo%20de%20agua%20red%20Valencia%202019.pdf
https://www.amazon.es/CULTIVERS-Force-Mix-correctora-Multiples-equilibrada/dp/B07RQZ49ZG/ref=sr_1_1?adgrpid=127659288432&gclid=Cj0KCQjw2MWVBhCQARIsAIjbwoMoIPxrAWaREfy-f_ljEe6tOJt2aKsJ_rEtbvMxLxKOC_YRRk9rviYaAq29EALw_wcB&hvadid=545572840954&hvdev=c&hvlocphy=1005545&hvnetw=g&hvqmt=e&hvrand=18322698701849969261&hvtargid=kwd-1461684836596&hydadcr=26466_1925966&keywords=force-mix+eco&qid=1655830592&sr=8-1


HydroBuddy  results  to  create  1  gallon  of  1:100  nutrient
solution for Valencia’s very hard water.

Note that we use absolutely no phosphates or sulfates, since
the solution already contains more than enough sulfur (89 ppm)
and we need to add all the Phosphorus as phosphoric acid to be
able to lower the alkalinity. I determined the amount of P to
add by setting P to zero, then using the “Adjust Alkalinity”
to remove half of the alkalinity of the water using phosphoric
acid. This is more than enough P to be sufficient for higher
plants. The above nutrient ratios should be adequate for the
growth of a large variety of plants, although they are a
compromise and not ideal for any particular type of plant.

Since we are adding no sulfates and the pH of the solution is
going to be very low (because of the phosphoric acid), we can
add all of these chemicals to the same solution (no need to
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make A and B solutions). The values in the image above are for
the preparation of 1 gallon of concentrated solution. This
solution is then added to the water at 38mL/gal of tap water
to create the final hydroponic solution.

Does it work?
I have experimentally prepared the above concentrated solution
– which yields a completely transparent solution – and have
created hydroponic solutions I am now using to feed my home
garden plants. After adding to my tap water – initial pH of
7.6 – I end up with a solution at a pH of 5.6-5.8 with around
1.5-1.8mS/cm  of  electrical  conductivity.  The  plants  I’m
currently growing – basil, rosemary, chives, mint, malabar
spinach and spear mint – all seem to thrive with the above
solution. I am yet to try it on any fruiting crops, that might
be something to try next year!

Are you growing using hard water, have you prepared a similar
one-part for your hard-water needs? Let us know what you think
in the comments below!

New  tissue  analysis  feature
in HydroBuddy v1.99

Tissue Analysis
To grow great plants, we need to grow plants that have a
healthy  mineral  composition.  Although  there  are  no
theoretically  established  values  for  what  the  mineral
composition of a plant should look like, we have grown healthy
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plants and have established, through analysis of their tissue,
what  this  mineral  composition  should  empirically  be.  By
sampling the leaf tissue from your plants and sending it to a
lab for analysis, you can know what the composition of your
tissue is and how it compares to healthy plants grown by
others.

The question is, can we create a nutrient formulation just
from the tissue composition we want to get?

Nutrient  solution  targets  from
tissue analysis
Turns out, you can figure out the elemental concentrations
that are required in solution to get to certain concentrations
in tissue. My colleague and friend – Bruce Bugbee – proposed
in this paper about nutrient management in 2004 how this could
be done. To achieve this, we make the assumption that all
elements taken up by the plant will be deposited as minerals
upon transpiration – because minerals cannot leave the plant
as gases – so knowing the amount of water that will transpired
per amount of tissue grown, we can figure out how much of that
element needs to be in the water.

The volume of water required to grow a certain mass of tissue
is called Water Use Efficiency (WUE). It is expressed as gram
of tissue per liter of water transpired and has values from
3.0 to 6.0. Higher WUE values imply the plant is growing more
efficiently, requires less water to grow the same mass of
tissue, while a lower WUE implies the plant is less efficient
and needs to transpire more to grow. Conditions that increase
growing efficiency and decrease transpiration, such as carbon
dioxide enrichment and high humidity, tend to increase WUE,
while conditions that create inefficient growing – like low
humidity with high temperature – tend to decrease it.

If we grow plants with a solution where we determine the

https://www.researchgate.net/publication/284231562_Nutrient_management_in_recirculating_hydroponic_culture


nutrients  according  to  the  WUE  and  the  concentrations  in
tissue we want, we can create very effective solutions that
lower the probability of over accumulation of nutrients in the
root zone and the solution. This allows for solutions that
require  no  dumping  and  create  very  healthy  plants  in
recirculating systems (for which Deep Water Culture, DWC, is
the most common example).

Doing this process in HydroBuddy
From  v1.99,  HydroBuddy  now  includes  a  “Tissue  Analysis”
dialogue that allows you to use target tissue concentrations
and a certain WUE value, to figure out what the required
nutrient  concentrations  in  a  hydroponic  solution  would  be
like. The program also includes a small Database with tissue
targets for certain plants and certain stages of development.
There are also a couple of links that point you to resources
where you can find a wide variety of different plant species
and development stages if the ones that interest you are not
included in the software’s default DB configuration.

The image below shows you an example where I determined the
target solution concentrations required to grow a tomato plant
that has the composition expected for a tomato plant in early
flower.



Nutrient solution targets for a hydroponic solution to grow
tomatoes with a leaf tissue composition equal to that expected
for tomatoes under initial flower (MRM = most recent mature
leaf). This assumes the WUE is 3.5 g/L.

How do I figure out the WUE?
As you can see, the above process requires you to input the
WUE. This ranges from 3 to 6. It is not easy to measure in the

https://scienceinhydroponics.com/wp-content/uploads/2022/05/2022-05-13_20-01-57.png


environment, so the best practical solution is to assume your
WUE is about 3.5 (the default value), prepare solutions with
those  concentrations  and  then  observe  how  the  EC  of  the
solution changes as a function of time.

A solution that is prepared with a concentration that would be
appropriate for the exact WUE of the plants will have an
initial decrease in EC – as nutrients that are taken actively
are rapidly taken up – followed by more stable to slightly
decreasing  EC  conditions  as  uptake  changes  to  be  mostly
passive. This cycle is repeated when solution is replenished
to recover the initial volume in a recirculating system. A
solution  that  is  prepared  too  concentrated  will  have  an
increasing EC while a solution that is prepared too diluted
will show a consistently decreasing EC. If your EC decreases
more sharply with time then you need to assume a higher WUE,
if  your  EC  increases  then  you  need  to  lower  your  WUE
assumption.

Limits of the approach
While this approach can be very useful to create long lasting
solutions,  especially  in  recirculating  systems,  it  suffers
from some important limitations.

The first is that it doesn’t account for changes in uptake due
to changes in pH or availability in solution. This is the
reason why the recommendations for elements like Fe and Mn,
might be significantly lower than what you commonly see in
nutrient  solutions.  In  the  above  example,  the  solution
requires only around 0.35ppm of Fe, but this means we need
0.35ppm of fully available Fe for the plant, which in reality
might mean having 1.5ppm of Fe or more of added Fe, depending
on the chemical form of Fe and the pH of the solution.

The  above  implies  that  values  should  not  be  used  without
considering the context and that this context might be much
more  important  for  some  nutrients,  for  example  micro



nutrients, than for other elements, for example K and Ca, for
which the availability windows and plant uptake are much more
straightforward.  The  plant  characteristics  should  also  be
taken into account. While a leaf tissue derived approach might
only require 50 ppm of Ca in a lettuce crop, we know we need
to feed more due to the poor water transport of this plant
into new leaves.

Second, the approach assumes that all we care about is leaf
composition. This is a perfectly fine if we are growing leafy
greens, but if you’re growing a tomato plant, the composition
will be heavily split between leaves and fruits as soon as
flower  pollination  ends.  For  this  reason,  the  nutritional
needs of other important tissues – such as sink organs –
should  be  considered  very  carefully  when  following  this
approach. In the case of tomatoes, this might mean feeding
substantially higher levels of K, as this element has a much
higher concentration in fruits than it has in leaves.

Crops that have changing nutritional needs due to changes in
the  composition  of  the  tissue  formed,  require  different
nutrient solutions as a function of time, as we need to match
the overall expected composition of the entire plant, not just
the leaves.

Conclusions
Nutrient formulations do not need to be just trial and error.
Up until now, besides a formulation database, HydroBuddy had
no  feature  to  help  growers  create  formulations  with  any
scientific basis. This new feature, introduces the ability to
use target leaf tissue composition and WUE as a way to guide
the initial formulation of nutrient solutions. While you still
need experience to figure out when to overrule these values
and increase or decrease concentrations, it does provide basic
blue prints to build from. An analysis of how a formulation
derived from tissue compares with your current formulation



might also give you some insights into whether you are over or
under feeding any elements.

Have you use the HydroBuddy’s leaf tissue analysis feature?
Leave us some comments below!


