My Kratky tomato project,
tracking a Kratky setup from
start to finish

Fully passive, hydroponic setups are now everywhere. However,
it seems no one has taken the time to diligently record how
the nutrient solution changes through time in these setups and
what problems these changes can generate for plant growth. In
my Kratky tomato project, I will be closely monitoring a
completely passive Kratky setup from start to finish. In this
post, I will describe how this project will work, what I will
be recording, and what I'm hoping to achieve. Check out the
youtube video below for an initial intro to this project.

Introduction video for this Kratky project.

The goals

It is tough to grow large flowering plants using truly passive
Kratky setups (read my blog post on the matter). We know this
is because of issues related to their increased water uptake
and the large nutrient and pH imbalances these plants create
in nutrient solutions. However, I haven’t found any data set
that shows how these problems develop as a function of time.
By measuring different variables in a Kratky setup through an
entire crop cycle, I hope to gather data to help us understand
what goes wrong, why it goes wrong and when it goes wrong.
With this information, we should be able to develop better
nutrient solutions and management techniques, for more
successful Kratky hydroponic setups for large flowering
plants.

https://scienceinhydroponics.com/2021/04/my-kratky-tomato-project-tracking-a-kratky-setup-from-start-to-finish.html
https://scienceinhydroponics.com/2021/04/my-kratky-tomato-project-tracking-a-kratky-setup-from-start-to-finish.html
https://scienceinhydroponics.com/2021/04/my-kratky-tomato-project-tracking-a-kratky-setup-from-start-to-finish.html
https://scienceinhydroponics.com/2021/02/can-you-grow-large-flowering-plants-like-tomatoes-using-the-kratky-method-passive-hydroponics.html

The setup

The setup is a 13L bucket wrapped in duct tape — to prevent
light from entering the system — with a hole at the top and a
net pot containing a tomato plant. The tomato — which I have
named Bernard — is an indeterminate cherry tomato that was
germinated in the net pot. The net pot contains a medium
consisting of 50% rice hulls and 50% river sand. The bucket
has been filled with a store-bought generic hydroponic
nutrient solution up to the point where it touches the bottom
of the net pot. Furthermore, the bucket is placed inside a
grow tent and receives 12 hours of light from a Mars Hydro TS
600 Full Spectrum lamp. The light has been initially placed
around 10 inches above the plant and will be moved as needed
to maintain proper leaf temperature and light coverage of the
plant.

The experimental Kratky setup. You can see the project box

https://scienceinhydroponics.com/wp-content/uploads/2021/04/2021-04-23_16-07-04.jpg

housing the Arduino and sensor boards at the bottom. Bernard
has been growing for 2 weeks and is already showing its second
set of true leaves.

The measurements

I will be monitoring as many variables as I can within this
experiment. To do this I have set up an Arduino MKR Wifi 1010
that uses self-isolated uFire pH and EC probes, a BME280
sensor to monitor air temperature and humidity, and a DS18B20
sensor to monitor the temperature of the solution. I will also
be using Horiba probes to track the Nitrate, Potassium, and
Calcium concentrations once per day. All the Arduino’s
readings are being sent via Wifi to a MyCodo server 1in a
Raspberry Pi, using the MQTT messaging protocol. The data is
then recorded into the MyCodo’s database and also displayed in
a custom dashboard. The ISE measurements are manually recorded
on a spreadsheet.

The dashboard of my MyCodo server, showing the measurements of
the system as a function of time. All readings are also
recorded in the MyCodo database for future reference and
processing.

Furthermore, I am also taking photographs every 15 minutes —
when the lights are on — using a smartphone. This will allow

https://scienceinhydroponics.com/wp-content/uploads/2021/04/2021-04-23_15-54-47.jpg

me to create a time-lapse showing the growth of the plant from
the very early seedling to late fruiting stages.

Conclusion

I have started a new project where I will fully record the
complete development process of a large flowering plant in a
Kratky setup. We will have information about the EC and pH
changes of the solution, as well as information about how
different nutrient concentrations (N, K and Ca) change through
the life of the plant. With this information, we should be
able to figure out how to modify the nutrient solution to grow
large flowering plants more successfully, and what
interventions might be critical in case fully passive growth
is not possible.

I will continue to share updates of this project in both my
blog and YouTube channel.

What do you think about this project? Do you think Bernard
will make it? Let us know in the comments below!

Arduino hydroponics, how to
build a sensor station with
an online dashboard

In a previous post about Arduino hydroponics, I talked about
some of the simplest projects you could build with Arduinos.
We also talked about how you could steadily advance towards
more complex projects, if you started with the right boards
and shields. In this post, I am going to show you how to build

https://www.youtube.com/channel/UCBUozkhpFEjwPTmx4_RSMwA
https://scienceinhydroponics.com/2021/04/arduino-hydroponics-how-to-build-a-sensor-station-with-an-online-dashboard.html
https://scienceinhydroponics.com/2021/04/arduino-hydroponics-how-to-build-a-sensor-station-with-an-online-dashboard.html
https://scienceinhydroponics.com/2021/04/arduino-hydroponics-how-to-build-a-sensor-station-with-an-online-dashboard.html
https://scienceinhydroponics.com/2021/04/arduino-hydroponics-how-to-go-from-simple-to-complex.html

a simple sensor station that measures media moisture and 1is
also connected to a free dashboard platform (flespi). The
Arduino will take and display readings from the sensor and
transmit them over the internet, where we will be able to
monitor them using a custom-made dashboard. This project
requires no proto-boards or soldering skills.

capacitive Soil

| oo C
wure Sensor vi.2 | .

Mors

An Arduino Wifi Rev2 connected to a moisture sensor,
transmitting readings to an MQTT server hosted by flespi that
generates an online dashboard

The idea of this project is to provide you with a simple start
to the world of Arduino hydroponics and IoT interfacing.
Although the project is quite simple, you can use it as a base
to build on. You can add more sensors, improve the display,
create more complicated dashboards, etc.

What you will need

For this build, we are going to use an Arduino Wifi Rev2 and
an LCD shield from DFRobot. For our sensor, we are going to be
using these low-cost capacitive moisture sensors. This sample
project uses only one sensor, but you can connect up to five
sensors to the LCD shield. Since this project is going to be
connected to the internet, it requires access to an internet-
connected WiFi network.

https://scienceinhydroponics.com/wp-content/uploads/2021/04/2021-04-22_12-45-29.jpg
https://amzn.to/32t13iI
https://www.dfrobot.com/product-1084.html

Additionally, you will also need a free flespi account. Go to
the flespi page and create an account before you continue with
the project. You should select the MQTT option when creating
your account since the project uses the MQTT protocol for
transmission. After logging into your account, copy the token
shown on the “Tokens” page, as you will need it to set up the
code.

Profile N cHaT
+ Dpefault = Tokens

. vA27.3(eu) #22921989 | 5 S
fI — account registration < @ TTLinan hour
espl (S 7} Expiration is not set

(D Created 2 hours ago, last ac. Maste OE

2. 0
b e = Login Copy token
O 4,
public_access ¥ @ TTLina year e
4 s not set '_,.\.‘__5‘:.
(t=1) '

; {ard) Expiration
(3 Created an hour ago, last a... ~tandard O Exp

MaTT

PUB/SUB \

Sessions \
MQTT sessions

Copy this token to
use in your

Go to Tokens Arduino's code

MQTT Tiles
Dashboarding tool

KV

MQTT Board
MQTT Client
Toolbox

MQTT logs

MQTT Broker API
Documentation

BB

Copy the token from the “Tokens” menu in flespi

Libraries and code

This project uses the U892, ArduinoMQTTClient and WiFiNINA
libraries. You should install them before attempting to run
the code. The code below is all you need for the project. Make
sure you edit the code to input your WiFi SSID, password, and
Flespi token, before uploading it to your Arduino. This also
assumes you will connect the moisture sensor to the analogue 2
port of your Arduino. You should change the ANALOG PORT
variable to point to the correct port if needed.

#include <Arduino.h>
#include <U8g2lib.h>

https://flespi.com/
https://scienceinhydroponics.com/wp-content/uploads/2021/04/2021-04-22_11-35-50.jpg
https://github.com/olikraus/u8g2
https://github.com/arduino-libraries/ArduinoMqttClient
https://github.com/arduino-libraries/WiFiNINA

#include <WiFiNINA.h>
#include <ArduinoMgttClient.h>
#include <SPI.h>

#define
#define
#define
#define

#define
#define

SECRET SSID "enter your wifi ssid here"
SECRET PASS "enter your password here"
FLESPI TOKEN "enter your flespi token here"
ANALOG PORT A2

MQTT BROKER "mgtt.flespi.io"
MQTT PORT 1883

U8G2 ST7565 NHD C12864 F 4W SW SPI u8g2(U8G2 RO, /* clock=*/
13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
float capacitance;

WiFiClient wifiClient;

MgttClient mgttClient(wifiClient);

// checks connection to wifi network and flespi MQTT server
void check connection()

{

if (!'mgttClient.connected()) {
WiFi.end();
WiFi.begin(SECRET SSID, SECRET PASS);
delay(10000);
mgttClient.setUsernamePassword (FLESPI TOKEN, "");
if (!'mgttClient.connect(MQTT BROKER, MQTT PORT)) {

Serial.print("MQTT connection failed! Error code = ");
Serial.println(mgttClient.connectError());
delay(100);

}
}
}

void setup() {
pinMode (LED BUILTIN, OUTPUT);
pinMode (4, OUTPUT);
Serial.begin(9600);
analogReference (DEFAULT);

check

connection();

void loop() {

String moisture string;
check connection();

// read moisture sensor, since this is a wifiRev2 we need to
set the reference to VDD

analogReference(VDD);

capacitance = analogRead (ANALOG PORT);

// form the string we will display on the Arduino LCD screen

moisture string = String(capacitance) + " mV";

Serial.println(moisture string);

// send moisture sensor reading to flespi

mqttClient.beginMessage("MOISTUREL");

mgttClient.print(capacitance);

mgttClient.endMessage();

// the LCD screen only works if I reinitialize it on every
loop

// I also need to reset the analogReference for it to
properly work

analogReference (DEFAULT) ;

u8g2.begin();

u8g2.setFont(u8g2 font crox3h tf);

u8g2.clearBuffer(); // clear the internal memory

u8g2.drawStr(10,15,moisture string.c str()); // write
something to the internal memory

u8g2.sendBuffer(); // transfer internal memory to
the display

delay(5000);
}

Your Arduino should now connect to the internet, take a
reading from the moisture sensor, display it on the LCD shield
and send it to flespi for recording. Note that the display of
the data on the LCD shield is quite rudimentary. This 1is
because I didn’t optimize the font or play too much with the
interface. However, this code should provide you with a good
template if you want to refine the display.

Configure Flespi

The next step is to configure flespi to record and display our
readings. First, click the MQTT option to the left and then go
into the “MQTT Board” (click the button, no the arrow that
opens up a new page). Here, you will be able to add a new
subscriber. A “subscriber” is an instance that listens to MQTT
messages being published and “MOISTURE1” is the topic that our
Arduino will be publishing messages to. If you want to publish
data for multiple sensors, you should give each sensor its own
topic, then add one flespi subscriber for each sensor.

You should be able to add a
new "subscriber”, set the
topic to MOISTURE1

HISTORY

Go to MQTT, then click on MQTT \
Board

Unsubscribe properties

0 e) _

Go to flespi and create a new “subscriber”, set the topic to
MOISTURE1

Create the Dashboard

The last step, is to use the “MQTT Titles” menu to create a
dashboard. I added a gauge widget to a new dashboard, and then
set the topic of it to MOISTURE1l, so that its data is updated
with our MQTT messages. I set the minimum value to 200; the
maximum value to 460; and the low, mid, and high levels to
250, 325, and 400 respectively.

https://scienceinhydroponics.com/wp-content/uploads/2021/04/2021-04-22_11-47-23.jpg

“0000000000
Add a "radial gauge” widget and set the
tepic of the widget to MOISTURE1

e r—q P e i .‘ o e e

Use the MQTT titles menu to add widgets to a new dashboard

After you finish creating the dashboard, you can then use the
“Get link” button, which looks like a link from a chain next
to your dashboard’s title. You will need to create an
additional token in the “Tokens” menu so that you can use it
for the sharing of the dashboard. After you generate the link,
it should be publicly available for anyone who is interested.
This is the link to the dashboard I created.

Conclusion

You can create a simple and expandable sensor station using an
Arduino Wifi Rev2, a capacitive moisture sensor, and an LCD
shield. This station can be connected to the internet via Wifi
and send its data to flespi, which allows us to create free
online dashboards. You can expand on this sensor station by
adding more moisture sensors or any other Gravity shield
compatible sensors, such as a BME280 sensor for temperature,
humidity, and atmospheric pressure readings.

https://scienceinhydroponics.com/wp-content/uploads/2021/04/2021-04-22_11-53-22.jpg
https://mqtttiles.flespi.io/#/eyJ0b2tlbiI6Imc4bTA4RHRVQmdvdEl3QWk3THYxVTVJc21nUnVvVDd1UmhpT0tDdzlHS3FjNFBpMXFEVDl6cnJKdjYxSFBZMXYiLCJ0b3BpYyI6InhmbGVzcGlmcm9udC9tcXR0dGlsZXMvYm9hcmRzIiwiYm9hcmRJZCI6Im1haW4tYm9hcmQifQ==

Arduino hydroponics, how to
go from simple to complex

Hydroponic systems offer a great opportunity for DIY
electronics. In these systems, you can monitor many variables,
gather a lot of data, and build automated control systems
using this information. However, the more advanced projects
can be very overwhelming for people new to Arduinos and the
simpler projects can be very limiting and hard to expand on if
you don’t make the right decisions from the start. In this
post, I'm going to talk about the easiest way to start in
Arduino hydroponics, which materials and boards to buy, and
how to take this initial setup to a more complex approach with
time.

The Arduino Wifi Rev2

Buy the right Arduino

First, buy an Arduino that allows you to build simple projects
without compromising your ability to upgrade in the future. My
recommendation would be an Arduino Wifi Rev2. These are small

https://scienceinhydroponics.com/2021/04/arduino-hydroponics-how-to-go-from-simple-to-complex.html
https://scienceinhydroponics.com/2021/04/arduino-hydroponics-how-to-go-from-simple-to-complex.html
https://scienceinhydroponics.com/wp-content/uploads/2021/04/abx00021_featured_1_1.jpg
https://amzn.to/32t13iI

boards that are compatible with Arduino Uno shields, with the
ability to connect to your network when you’re ready for more
complex projects. Shields are boards that can be stacked on
top of your Arduino, which allow you to get additional
functionality or simplify the usage of the board. The Arduino
Wifi Rev2 is a perfect choice, as you can outgrow simpler
boards quickly while the more complicated ones are likely to
be overkill and limit your potential shield choices.

Avoid soldering and protoboards, go
for plug-and-play

For people new to Arduino, it is easier to avoid sensors that
require soldering or protoboards and go with plug-and-play
approaches. My all-time favorite is the “Gravity” system
created by DFrobot, which uses shields that expose quick
access connectors that you can use to plug-in sensors. My
recommendation is the LCD12864 Shield, which has an LED and
allows you to connect both analog and digital sensors. If you
buy any “Gravity-compatible” sensor, you will only need to
hook up a connector, no soldering or protoboards involved. You
also have a graphic interface you can program and buttons you
can use to interact with your Arduino and code.

https://www.dfrobot.com/product-1084.html

' e .
-"i‘.a
56 12 »

-
D

1

1]
RX TX

=
2 g i
)
= 8 °
- h:- (o]
= (B o™
] + D
" =
"] ~

éug

A=y

lr.'_r gl
. . N *inl
;. %.LCD12864 Shield wﬁo s

PR S A N P g S S

The LCD12864 Gravity shield that exposes easy plug-and-play
ports for sensors

Start with a temperature/humidity
display station

A good beginner project is to create a monitoring station that
displays the readings from sensors on a screen. I’'ve written
about how to build such a station in a previous blog post.
However, since pH and EC sensors can be more complicated, it
is easier to start with temperature/humidity sensors only.
There are several cheap sensors of this kind, such as the
DHT11 and DHT22 sensors, but these_have important issues. A
better choice for hydroponics is the SHT1x sensor. If you are
more advanced, the BME280 sensors are now my low-cost sensor
of choice. There are lots of gravity sensors to choose from.
You can also monitor CO,, 1light intensity, solution

temperature, EC, pH, and other variables as you become more
advanced.

[x]
The SHT1x Gravity sensor, this can be easily plugged into the

https://scienceinhydroponics.com/wp-content/uploads/2021/04/image-5.png
https://scienceinhydroponics.com/2017/05/a-simple-arduino-based-sensor-monitoring-platform-for-hydroponics.html
https://scienceinhydroponics.com/2020/04/the-best-cheap-sensor-setup-for-relative-humidity-in-hydroponic-automation-projects.html
https://www.dfrobot.com/product-80.html

LCD12864 shield shown before

When you go into EC/pH monitoring, make sure you buy sensors
that have electrically isolated boards. The ones from DFRobot
are not electrically isolated and have important issues when
multiple probes are put in the same solution. Most cheap ones
on eBay/Amazon, have the same issues. I would recommend the
sensors boards from uFire, which have a lower cost, are
properly isolated, and are easy to use. The hydroponic kit
collection, offers all the sensors and boards you require, 1in
rugged industrial quality configurations, to build a
hydroponic monitoring station.

Next step, simple control

The next step in complexity is control. You can use a Gravity
relay to switch a light or timer on or off. You can also use a
simple dead-band algorithm to attempt to control vyour
temperature and humidity values by using relays to turn
humidifiers, dehumidifiers, or AC systems on or off. If you
want to control nutrients and pH, this is also where you would
get shields to run stepper motors and the peristaltic pumps
required to feed solutions into a tank. I’'ve used this shield
stacked under an LCD12864 for this purpose.

As an example of simple control, imagine your humidity 1is
getting too high, so you install a dehumidifier to keep your
humidity from climbing above 80%, you then create a line of
code that sets the relay to “on” whenever the humidity gets
higher than 80% and shuts it down whenever it drops below 75%.
That way your crop’s humidity increases to 80%, the
dehumidifier kicks in, and then it shuts down when it reaches
75%. This allows the setup to climb back up for some time,
avoiding the continuous triggering of your appliance.

https://ufire.co/
https://ufire.co/collections/hydroponic-kit
https://ufire.co/collections/hydroponic-kit
https://www.dfrobot.com/product-1360.html

Data Logging

After you're comfortable with both monitoring setups and
simple control, the next step is data logging. Up to this
point, none of your setups have done any data logging. By its
very nature, an Arduino is not built to log any data, so this
will require interactions with computers. My favorite way to
do this is to set up a MyCodo server on a Raspberry Pi, then
transmit data to it using the MQTT protocol. Since your
Arduino Wifi v2 can connect to your Wifi network, you will be
able to transmit data to your MyCodo using this configuration.

26.2 5.63 1056. 1.6 0 seol

1 I &h [] Full

Al lillicer

PT-1000 {CHD, Temperature, T) EC $CHD, Electrical Conductivity, uS/om) pH (CHO, lon Concentration, pi)
Pump 1 - Acid (pH Down) (CHO, Volume, ml) Pump 2 - Base (pH Up) (CHO, Volume, ml) Pump 3 - Mutrient A (CHD, Volume, ml)

Pump 4 - Nutrient B (CHO, Volume, mi)

A sample of the data-logging capabilities of a MyCodo server.
Taken from the MyCodo site.

I have previously written posts about MyCodo, as well as how
to build a pH/EC wireless sensing station that transmits data

https://github.com/kizniche/Mycodo
https://scienceinhydroponics.com/wp-content/uploads/2021/04/image-6.png
https://github.com/kizniche/Mycodo
https://scienceinhydroponics.com/2021/03/mycodo-an-open-source-solution-for-control-data-logging-and-visualization.html
https://scienceinhydroponics.com/2021/03/creating-a-ph-ec-wireless-sensing-station-for-mycodo-using-an-arduino-mkr-wifi-1010.html
https://scienceinhydroponics.com/2021/03/creating-a-ph-ec-wireless-sensing-station-for-mycodo-using-an-arduino-mkr-wifi-1010.html

to a MyCodo server. This allows me to log data continuously
and monitor it without having to go into my hydroponic crop.
Since the server is centralized, it also allows you to monitor
multiple sensing stations simultaneously. I use my MyCodo
server to monitor both my hydroponic crops and Arduino sensing
stations that monitor how much food my cats eat.

More complex control

After you have connected your Arduino to a MyCodo server, you
have access to much more complicated control, through the
Raspberry Pi computer. You can then implement control
algorithms in the MyCodo, then communicate with your Arduino,
and trigger actions using MQTT messages. This means that you
no longer need to code the control logic into your Arduino but
you can do all the control in the raspberry Pi and just
communicate the decisions made to the Arduino Wifi Rev2.

More complicated algorithms includes the use of proper PID
algorithms for the control of humidity, temperature, pH and
EC. It also includes the implementation of reinforcement
learning algorithms and other advanced control methods that
the Raspberry Pi can have the capacity to run.

Conclusion

Arduino in hydroponics does not need to be complex. Your first
project can be a simple temperature/humidity monitoring setup
and you can evolve to more complicated projects as your
understanding and proficiency grow. If you select a powerful
and feature-rich Arduino from the start, you can use the same
controller through all your different projects. If you select
shields that can make your life easier — such as the LCD12864
shield — and use a plug-and-play sensor interface, you can
concentrate on building your setup and your code, rather than
on soldering, getting connections right, and dealing with
messy protoboard setups.

The road from a simple monitoring station to a fully fledged
automated hydroponic setup is a long one, but you can walk it
in small steps.

Have you used Arduinos in your hydroponic setup? Let us know
about your experience in the comments below!

Creating a pH/EC wireless
sensing station for MyCodo
using an Arduino MKR Wifi
1010

There are multiple open-source projects available online for
the creation of pH/EC sensing stations for hydroponics.
However, all of the ones I have found use a single Arduino or
Raspberry Pi to perform the measurements and store any data,
making them unsuitable for applications where more flexibility
is needed. For example, a facility using multiple different
reservoir tanks for nutrient storage might require multiple
pH/EC sensing stations, and single-board wired setups would be
unable to accommodate this without a lot of additional
development. In this post, I am going to show you a simple
pH/EC sensing station I built with an Arduino MKR Wifi 1010
that can communicate with a MyCodo server using the MQTT
protocol. Multiple sensing stations could be built and all of
them can communicate with the same MyCodo server.

https://scienceinhydroponics.com/2021/03/creating-a-ph-ec-wireless-sensing-station-for-mycodo-using-an-arduino-mkr-wifi-1010.html
https://scienceinhydroponics.com/2021/03/creating-a-ph-ec-wireless-sensing-station-for-mycodo-using-an-arduino-mkr-wifi-1010.html
https://scienceinhydroponics.com/2021/03/creating-a-ph-ec-wireless-sensing-station-for-mycodo-using-an-arduino-mkr-wifi-1010.html
https://scienceinhydroponics.com/2021/03/creating-a-ph-ec-wireless-sensing-station-for-mycodo-using-an-arduino-mkr-wifi-1010.html

My Arduino MKR wifi 1010 based sensing station, using uFire pH
and EC boards in a small project box.

This project makes use of the small pH/EC boards provided by
uFire, which have a lower cost compared to those provided by
companies like Atlas, but do have adequate electrical
isolation to avoid problems in readings when multiple
electrodes are put in the same solution. This is a substantial
improvement over other low-cost boards where using multiple
probes can cause heavy electrical noise and interference. In
order to build this project you will require the following
materials:

Note, some of the links below are amazon affiliate links. This
means that I get a small commission if you purchase through
these links at absolutely no extra cost to you. The links to
other websites are not affiliate links.

. Arduino MKR Wifi 1010

. UFire pH probe

. UFire EC probe

. A rugged pH probe with a VNC connector
. An_rugged EC probe with a VNC connector
. Two Qwiic-to-Qwiic connectors

SO U1 b W N K

https://scienceinhydroponics.com/wp-content/uploads/2021/03/IMG_20210323_121112918-scaled.jpg
https://amzn.to/3cfCc7S
https://ufire.co/products/isolated-ise-probe-interface
https://ufire.co/products/isolated-ec-probe-interface
https://ufire.co/collections/all/products/industrial-ph-probe
https://ufire.co/collections/all/products/industrial-conductivity-probe
https://ufire.co/products/qwiic-wire

7. One Qwiic-to-male connector
8. A project box to put everything inside (optional)
9. A micro USB cable

The code for the project is shown below:

#include <uFire EC.h>
#include <uFire pH.h>
#include <WiFiNINA.h>
#include <ArduinoMqgttClient.h>

#define SECRET SSID "ENTER WIFI SSID HERE"
#define SECRET_PASS "ENTER WIFI PASSWORD HERE"

//calibration solutions used

#define PH HIGH SOLUTION PH 7.0
#define PH LOW SOLUTION PH 4.0
#define EC HIGH SOLUTION EC 10.0
#define EC LOW SOLUTION EC 1.0
#define CALIBRATION TEMP 20.0

// topics for the mqtt sensors
// Make sure all stations have different topics

#define EC TOPIC "EC1"

#define PH TOPIC “PH1"

#define CALIB TOPIC “CALIB1"

#define MQTT BROKER "ENTER MQTT SERVER IP HERE"

#define MQTT_PORT 1883

int status = WL IDLE STATUS; // the Wifi radio's status

String message;

uFire pH ph;

uFire EC ec;

WiFiClient wifiClient;

MgttClient mgttClient(wifiClient);

void check connection()
{
if (!mgttClient.connected()) {
WiFi.end();
status = WiFi.begin(SECRET SSID, SECRET PASS);

https://ufire.co/products/qwiic-wire
https://amzn.to/3d2lK9Y

}

delay(10000);

if (!'mgttClient.connect(MQTT BROKER, MQTT PORT)) {
Serial.print("MQTT connection failed! Error code = ");

Serial.println(mgttClient.connectError());
delay(100);

}

mgttClient.subscribe(CALIB TOPIC);

}

void setup()

{

}

Serial.begin(9600);
while (!Serial);

// connect to wifi and mqtt broker

check connection();

// coorectly initialize the uFire sensors

// note the Wire.begin() statement is critical
Wire.begin();

ec.begin();

ph.begin();

void loop()

{

// mgtt keep alive
mgttClient.poll();

// read messages
message = "";
while (mgttClient.available()) {

message += (char)mqgttClient.read();

}

// execute calibration if requested
Serial.println(message);
if (message ==

"EC1 HIGH")

ec.calibrateProbeHigh(EC HIGH SOLUTION EC, CALIBRATION TEMP);

if (message ==

"EC1 LOW")

ec.calibrateProbeLow(EC LOW SOLUTION EC, CALIBRATION TEMP);

if (message == "PH1 HIGH")
ph.calibrateProbeHigh(PH HIGH SOLUTION PH);

if (message == "PH1 LOW")
ph.calibrateProbeLow(PH LOW SOLUTION PH);

// Measure EC
ec.measureEC();
Serial.println((String) "mS/cm: " + ec.mS);

// Measure pH
ph.measurepH() ;
Serial.println((String) "pH: " + ph.pH);

// Ensure the wifi and mqgtt connections are alive
check connection();

// post EC to MQTT server
mgttClient.beginMessage(EC TOPIC);
mgttClient.print(ec.mS);
mgttClient.endMessage();

// post pH to MQTT server
mgttClient.beginMessage(PH TOPIC);
mqttClient.print(ph.pH);
mgttClient.endMessage();

// ensure sensors are not probed too frequently
delay(1000);

}

Once you get all the materials you should first assemble the
components. Connect the pH and EC board together using the
Qwiic-to-Qwiic connector, then use the Qwiic-to-male connector
to hook up one of these boards to the Arduino (doesn’t matter
which one). Connect the black cable to ground, red cable to
5V, blue cable to SDA, and yellow cable to SCL. Set up your
board according to the instructions in the Arduino MKR wifi
1010 getting started page, modify the code above to properly
include information about your wifi network, calibration
solutions, and MQTT server, then upload the code. The Arduino

https://www.arduino.cc/en/Guide/MKRWiFi1010/
https://www.arduino.cc/en/Guide/MKRWiFi1010/

will connect to your Wifi and MQTT servers and automatically
reconnect when there are connection issues.

The above code will also post the readings of the pH and EC
sensors to topics PH1 and ECl respectively if you add an input
in MyCodo to capture these readings you should be able to
store them and take control actions using the MyCodo
interface. Additionally, the Arduino code will respond to
calibration requests published to the topic “CALIB1”. For
example, if you want to calibrate your EC sensor with a two-
point calibration method with a standard solution with an EC
of 10mS/cm, you would put the electrode in the calibration
solution, then send the message “EC1 HIGH” to the CALIB1 topic
and the Arduino will perform the task as requested. The code
assumes you will want to do 2 point calibrations for both EC
and pH, with the calibration events triggered by EC1 HIGH,
EC1 LOW, PH1 HIGH, and PH1 LOW. Note that the definition of
the EC and pH values of the calibration solutions should be
changed to the solutions you will be using within the code.
The high/low values in the code, as is, are 10mS/cm|1mS/cm for
EC and 7|4 for pH.

Calibrating a <capacitive
moisture/water content sensor
for hydroponics

As I've mentioned multiple times in my blog, moisture sensing
is one of the most important measurements in a hydroponic crop
that uses a significant amount of media. It allows you to
properly time irrigations and avoid over or under watering
your plants. Capacitive sensors are the lowest cost initial

https://scienceinhydroponics.com/2021/03/calibrating-a-capacitive-moisture-water-content-sensor-for-hydroponics.html
https://scienceinhydroponics.com/2021/03/calibrating-a-capacitive-moisture-water-content-sensor-for-hydroponics.html
https://scienceinhydroponics.com/2021/03/calibrating-a-capacitive-moisture-water-content-sensor-for-hydroponics.html

approach to adequate moisture monitoring of your media. In
this post, we are going to learn how to use an Arduino with a
gravity shield and a low-cost capacitive moisture sensor in
order to accurately monitor the water saturation of our media.

A capacitive sensor plugged into an LCD shield and an Arduino
UNO. The measurements are very easy to track with this setup.

An analogue capacitive moisture sensor like this one does not
expose any metallic parts to the media and can be used for the
monitoring of moisture content. This sensor is powered by
3.5-5V and gives you a voltage signal that is proportional to
the dielectric constant of the media it is in. As the
dielectric constant of media changes with the presence of
water, so does the signal of the sensor. However, no specific
voltage corresponds to a specific water content measurement by
definition, so we need to calibrate the sensor in order to
interpret the voltage values we read from it. In order to get
readings from this sensor, I use an Arduino UNO, the above-

https://scienceinhydroponics.com/wp-content/uploads/2021/03/IMG_20210319_085037016-scaled.jpg
https://amzn.to/3108VY4

linked capacitive sensor, and an LCD shield from dfrobot that
I can use to easily get the device readings. The arduino code
used for this device is also shared below.

#include <U8glib.h>

#define XCOL SET 0
#define XCOL SET UNITS 50

UBGLIB NHD C12864 u8g(13, 11, 10, 9, 8);
float capacitance;

void draw() {

u8g.setFont(u8g font helvB10);

u8g.drawStr(0,21,"M SENSOR:");

u8g.setPrintPos (XCOL SET,51);

u8g.print(capacitance);

u8g.drawStr(XCOL SET UNITS,51,"mV");
}

void setup() {
pinMode (LED BUILTIN, OUTPUT);
pinMode (4, OUTPUT);
Serial.begin(115200);
analogReference (DEFAULT) ;
Serial.println("MOISTURE");

u8g.setContrast(0);
u8g.setRot180();

}
void loop() {

draw();
capacitance = analogRead(1);
Serial.println(capacitance);

u8g.firstPage();
do {
draw();

https://www.dfrobot.com/product-1084.html

}
while(u8g.nextPage());

delay(1000);
}

The calibration of a moisture sensor usually requires the
creation of what soil scientists call a “water retention”
curve, which is a curve where you plot the sensor’s signal as
a function of a fixed volume or weight of water added to the
media. However, this approach involves the use of many
different containers and the addition of water to the media
followed by oven drying steps in order to accurately determine
how much moisture was actually in the media for every
measurement carried out.

In order to do this procedure in an easier manner, losing as
little accuracy as possible, I have created a calibration
procedure that makes use of natural drying and only requires
one single oven drying step. The procedure is as follows:

1. Heat the media that will be used for an experiment in an
oven at 110°C (this drives out all water).

2. Wait for the media to cool to room temperature.

3. Fill the container that will be used for the test (this
can plastic but has to have holes at the bottom). Put
the sensor in the media, make sure the sensor is driven
into the media until the top line is reached.

4. Take a reading, this is the “completely dry” media
reading.

5. Disconnect the sensor from the Arduino.

6. Weigh the container+media+sensor. This will be the “dry
weight”.

7. Take the sensor out.

8. Add water to the media until there is ample runoff
coming out of the bottom.

9. Wait until no more runoff comes off.

10. Put the sensor in the media, making sure you drive it in

until the top line is reached. The sensor won’'t be taken
out for the remainder of the experiment.

11. Connect the sensor and take a reading. Take note of this
value.

12. Disconnect the sensor.

13. Weigh the container+media+sensor. Take note of this
value. The first reading you take is the “max
saturation” weight.

14. Repeat steps 11 to 13 every 1-6 hours (time is not very
important as long as you gather enough data points)
until you reach close to the dry weight. This can take
several days depending on the media used. The more
points you measure, the more accurate your curve will
be.

After carrying out this procedure, you can create a curve like
the one shown below. You can use the difference between each
weight and the dry weight divided by the difference between
the weight at max saturation and the dry weight in order to
calculate the water saturation percentage. As you can see, the
curves for these sensors are fairly linear in the 40-100%
moisture range for the media I tested, while below 40% the
regime changes and the measurement increases exponentially
until it reached the “dry weight” sensor value. The entire
curve can be described with a power-law equation. This
behavior will not be the same for all media tested, reason why
it’s very important for you to calibrate the sensor for the
specific media you want to use.

La

ol

Ln
-«

= 473 75x -1

V=
R*=05933

Measurements (m\y)
La
(=]
(Mg}
L]

0 20 a0 &0 B0 100 120
Water Saturation (%)

Calibration curve for a capacitive moisture sensor. In this

case, the media was a mixture of 50% river sand and 50% rice

husks.

Once you have your sensor calibrated you can know what a
measurement in mV implies in terms of water saturation for a
given media type. This allows you to time your irrigations at
a given water saturation % effectively. Which water saturation
percentage might be better, depends on the properties of your
media and how the water potential changes as a function of the
water saturation. However, this allows you to experiment with
irrigations at different water saturation % values and figure
out exactly where you need to water so that your plants are
not under or overwatered.

It is also worth noting that the above sensor is probably not
rugged enough for use in a hydroponic setup without a bit more
hardening. In order to use these sensors in practical
applications, you should apply conformal coating to the
electronics at the top of the sensor and then use shrink
tubing in order to fully protect these electronics from the
elements.

https://scienceinhydroponics.com/wp-content/uploads/2021/03/image-7.png

Pros and cons of building
your own sensor and data
logging system in hydroponics

If you’'ve read my blog before, you know how important data
logging is to having a successful hydroponic crop. Data allows
you to monitor and tune the different variables in your grow,
which allows you to give your plants the perfect environment
through their entire growing cycle. However, deciding how to
do this is not simple, you need to decide if you’re going to
go with a company that sells some pre-made data-logging
solution or you need to build everything yourself. In this
post, I'm going to talk about several pros and cons of
building your own data logging system for your hydroponic
crop.

Pros

You have control over everything. The most important pro when
building your own data logging solution 1is that you have total
and absolute control over all aspects of it. If you want to
support some type of sensors or have your data stored a
certain way, there is nothing preventing you from doing this
except your own skills and imagination. If you want to support
an obscure messaging protocol, wireless transmission systenm,
etc, it is all up to you. You won’t be limited by the
management decisions of an external company and you will be
able to build a system that perfectly caters to your needs.

https://scienceinhydroponics.com/2021/03/pros-and-cons-of-building-your-own-sensor-and-data-logging-system-in-hydroponics.html
https://scienceinhydroponics.com/2021/03/pros-and-cons-of-building-your-own-sensor-and-data-logging-system-in-hydroponics.html
https://scienceinhydroponics.com/2021/03/pros-and-cons-of-building-your-own-sensor-and-data-logging-system-in-hydroponics.html

LIGHT DATA

SELECT AN AREA BY DRAGGING ACROSS THE LOWER CHART

A simple plant monitoring custom built system. Read more here.

You will be able to leverage low-cost hardware. When building
your own system you will be able to get all the parts
yourself. This means you will be able to substantially reduce
costs. Of course, you’'re incurring the important cost of your
time but the hardware itself will be low cost and once you
implement the basic setup you will be able to connect new
rooms and build new logging stations for a fraction of the
cost of buying one commercially.

Take advantage of new hardware quickly. As new technologies
for monitoring environmental variables are invented or the
desire to control new variables comes into play, your ability
to fully control your setup will allow you to take advantage
of new hardware that comes into the scene while companies will
usually be very slow to respond to such changes.

A much deeper understanding. When you build all the monitoring
setup yourself, you will create a lot of understanding about
how the sensors work, how each one of them is calibrated, how
data is transmitted, stored, etc. If you build your own
monitoring setup you will gain a much deeper understanding
than somebody who just buys an off-the-shelf product.

https://create.arduino.cc/projecthub/ryanjgill2/plant-monitoring-system-88ed2b?ref=similar&ref_id=10257&offset=4

No need for patchwork approaches. When you decide to get a
commercial solution for data logging, one of the issues that
comes along is that you will get the setup from a company that
supports some types of sensors but you will often face
challenges if you want a sensor outside this offering. This
will usually mean buying a setup that includes that sensor
from a completely different company, measuring some variables
with one system and some others with another system.

Cons

No one to support it. The biggest drawback of building things
yourself — or hiring someone to build a custom system for you
— 1s that you will have no one to help you debug your system
when things go wrong. You will also have limited ability to
delegate this work, as your highly custom system will demand
somebody with a high level of skill to become familiar with it
and operate it with the same level of proficiency as you do. A
custom solution means all of this responsibility will fall on
the shoulders of those who developed the system.

A custom built data logging system to read EC/pH/ORP. Read
more here.

Limited by your knowledge. Although it is true that you will
get a pretty deep understanding of the things you decide to
incorporate into your system, you will also be very limited in
the design and implementation of your system because of your
particular limitations as an individual. A big company that
develops a data logging system will have dozens of people
working on it, and all of their experience will go into the
decisions that were made in the sensor and software
implementations. This can mean better sensor choices are made,
more robust communication protocols are used, etc.

Not built for sharing. Custom-built systems usually have the
problem that they are built with poor documentation. Sharing
is normally not the priority and people will prefer to build
“fast and dirty” in order to get things done. This means that
the code is usually poorly commented and of a lower quality
than what you get from a product that comes from a business.

https://create.arduino.cc/projecthub/uFire/nano-33-iot-ec-ph-orp-webapk-82ab54?ref=tag&ref_id=hydroponics&offset=4
https://create.arduino.cc/projecthub/uFire/nano-33-iot-ec-ph-orp-webapk-82ab54?ref=tag&ref_id=hydroponics&offset=4

Although some people who build custom software that they
intend to release as open-source implementations will often go
to great lengths to provide great code quality this is rarely
the case when the intention is not to make everything open
source.

Big overhauls are a big problem. Since your custom building
efforts will usually rely on one or two individuals, bad
decisions that are made at the beginning of a project will
carry a big toll during the entire life of the system. Poor
decisions will be hard to overcome, as a lot of work will be
needed to overhaul these “built from scratch” systemA big
business with large teams will make fewer poor decision and
those mistakes will be found out and fixed faster.

Messy hardware that often breaks easily. Due to the fact that
people who build DIY implementations will go for rapid
prototyping and functionality over robustness, sensor and data
logging setups built in this manner will usually lack the
roughness of commercial implementations. While a business
dedicated to data logging wants to build systems with adequate
sensor housing, and durability for transport, with customer
satisfaction in mind, a person who builds this for him or
herself might be ok with having a lot of exposed boards and
cables. Overall DIY setups are therefore less robust, more
likely to break, and more likely to suffer from electrical
issues like poorly grounded circuitry.

Hopefully, the above pros and cons give you a useful idea of
what you’'re gaining and losing when you decide to build your
own custom-built data logging system for hydroponics. While
you will usually get much more flexible, lower cost, cohesive
and personalized setups from custom building, this will
usually come at the cost of higher support costs in time,
lower reliability, lower build quality, and compromises in
quality depending on where your strengths as a builder/coder
are. For small setups, it is usually a no-brainer to go with a
custom setup — because of how much you learn from doing this

and how much you can experiment — while for larger setups
careful consideration of the above cons is important.

Hardware for building a wifi-
connected DIY
monitoring/control system for
a hydroponic crop

Success in hydroponic systems can be increased by having
adequate control over a wide array of different variables.
Having automated monitoring and control will mean faster
reaction times and provide better information about crop
cycles as they happen. Having the possibility to choose the
sensors that you require and code the control algorithms
yourself will also provide much more flexibility when compared
with commercial solutions, although the price can often be
higher since you are going to get hardware that has
capabilities that will likely exceed the minimal capabilities
required to perform the specific setup you will arrive at. In
today’s post I want to talk about the hardware I generally use
to build a basic DIY monitoring/control system that involves
no soldering and allows for easy connections of all sensors. I
will talk about each piece, its cost and why/how it’s needed
within a basic system.

Raspberry Pi 4 — 39.61 USD. This is going to be the computer
that will be the brain of the entire operation. The Raspberry
Pi will receive information from all the sensors around and
will make control decisions that will then be sent to the
appropriate control-executing stations within the network, it

https://scienceinhydroponics.com/2020/09/hardware-for-building-a-wifi-connected-diy-monitoring-control-system-for-a-hydroponic-crop.html
https://scienceinhydroponics.com/2020/09/hardware-for-building-a-wifi-connected-diy-monitoring-control-system-for-a-hydroponic-crop.html
https://scienceinhydroponics.com/2020/09/hardware-for-building-a-wifi-connected-diy-monitoring-control-system-for-a-hydroponic-crop.html
https://scienceinhydroponics.com/2020/09/hardware-for-building-a-wifi-connected-diy-monitoring-control-system-for-a-hydroponic-crop.html
https://amzn.to/32SBBUB

will also record sensor readings and provide a proper
interface for the management staff. Usually I use the
raspberry Pi to host the database that contains all the sensor
readings, plus the execution of the control algorithms and the
hosting of web server that the people who manage the crop can
access from their other devices (in order not to have to
access the raspberry pi directly all the time).

The raspberry Pi 4 computer. Note that you will need a power
supply cable and SD card as well, which are an additional cost
to the above.

Arduino UNO WiFi REV2 — 39.96 USD. These arduino boards are
going to be the heart of the sensing stations and the stations
that execute control actions. They will take sensor readings
and send them back to the Raspberry Pi via the wifi network.
When I build DIY solutions of this type I usually use the MQTT
protocol to communicate between the Raspberry Pi and the
Arduinos, for this reason it'’s really convenient to have the
Arduinos include Wifi themselves, so that additional money
does not need to be spent on WiFi chips for them. With the

https://amzn.to/303i1U6

Arduino UNO WiFi REV2 you will have all the WiFi connectivity
you need available from the get-go, with the ability to still
use all the shields an Arduino UNO can support.

Whitebox labs Tentacle shield — 127 USD. This arduino shield
offers you the ability to implement measurement of several
different sensors in your hydroponic crop. With this shield
you can connect up to 4 different Atlas probe sensors, with
all the measurements being properly electrically isolated,
allowing you to place all the different probes in the same
tank.

Atlas pH kit — 164 USD. This is the pH probe sensor and EZO
board that are required to be able to connect an Atlas pH
probe to your Whitebox labs Tentacle shield above. This pH
probe is of very good quality and will provide good readings
even if the probe is immersed for a significant period of
time. I have used these probes successfully for constant
monitoring of recirculating solution tanks, with the probes
having to be recalibrated every few months and so far no
probes having to be replaced. However, if you want a probe
that will withstand a lot of additional stress, then the
industrial Atlas pH probe might be a better choice. The kit
also includes the calibration solutions necessary to setup the
probes.

Atlas EC probe conductivity kit — 239 USD. This contains the
necessary materials to connect an EC probe to the Whitebox
Tentacle shield. The kit also includes all the necessary
calibration solutions to setup the probe, it is analogous to
the pH kit mentioned above.

Gravity IO Expansion shield for Arduino — 8.90 USD. This
shield provides you with a lot of additional plug-and-play IO
capabilities for your Arduino UNO sensor/control stations. I
generally use these shields to be able to easily connect
digital/analogue sensors and relays from dfrobot. It is very
easy to do and does not require the use of any soldering or

https://amzn.to/3hYhcls
https://amzn.to/3crcoDZ
https://amzn.to/3cp88EV
https://amzn.to/3cnELmw
https://www.dfrobot.com/product-1009.html

proto-boards. When you couple the use of these shields with
project boxes you can come up with some very robust and
practical DIY implementations that are easy for anyone to
Ccreate.

The Gravity IO shields are an incredibly versatile tool to
connect sensors/relays to an Arduino sensing/control station

Gravity quad motor shield for Arduino — 14.90 USD. Like the
above, I generally use these shields as part of control
stations where I will be using motors to carry out control
actions. This shield can power up to 4 small DC motors, so it
is ideal to control small peristaltic pumps like the ones we
generally use to move small amounts of concentrated nutrient
solutions or pH up/down solutions.

Environmental sensors (Temperature, relative humidity,
barometric pressure) BME280 — 15 USD. These sensors are my
all-time favorites for measuring temperature, humidity and
barometric pressure in hydroponic crops. They have one of the
most accurate low-cost chipsets to measure humidity and this
DFRobot package is extremely easy to plug into the DFRobot IO
shield mentioned above (just plug the connector into a digital
input row!).

https://www.dfrobot.com/product-1513.html
https://www.dfrobot.com/product-1513.html
https://www.dfrobot.com/product-1513.html

Analog infrared carbon dioxide sensor — 58 USD. These sensors
have been my go-to solution when it comes to measuring carbon
dioxide concentrations. They are fairly accurate and can tell
you if you are circulating air enough or if your carbon
dioxide enrichment is working as expected. I usually equip at
least one of the environmental sensing stations I setup with
one of these sensors so that I can keep an eye on the crop’s
average carbon dioxide level.

Capacitive soil moisture sensor — 14.90 USD. When we measure
water content in hydroponic crops we are going to be placing
the sensor in contact with highly corrosive and conductive
nutrient solutions, so we want to avoid any water content
measuring devices that use conductivity. This capacitive
sensor has become my choice of sensor for the measuring of
water-content, it is really easy to use and calibrate and
offers the ability to monitor several different plants due to
its relatively low cost.

Ambient light sensor — 2.60 USD. This very low cost sensors
are great for telling whether lights are actually on/off based
on their inputs. They can also give you a crude measurement of
how strong light is — i1f you are growing under the sun — so
they can help you track if shades are needed. There are
certainly more elaborate sensor, but this sensor gets the job
done for a very low price.

120V, 5A Relay — 2.60 USD. These relays are my go-to choice
when having to power low power appliances on-off in a
hydroponic setup. They are great to control things like fans
and smaller lights. If you want to control larger lamps then I
would suggest you use the 16A relays that can handle much
larger currents. As with the previous sensors/controls we’ve
discussed, these relays can be easily plugged into the Gravity
I0 shield, allowing for the easy building of relay control
stations.

The above are some of the pieces that I will commonly use in a

https://www.dfrobot.com/product-1549.html
https://www.dfrobot.com/product-2054.html
https://www.dfrobot.com/product-1004.html
https://www.dfrobot.com/product-64.html
https://www.dfrobot.com/product-992.html

hydroponic crop for systematic monitoring/control. While some
of these — like the pH/EC sensors and boards — could be
replaced by cheaper equivalents, I prefer to go with more
expensive parts that have better electrical isolation and
properties. However, a very cool and useful sensor setup can
be built with just an Arduino, a Raspberry Pi, a gravity IO
shield and a bunch of environmental sensors. Of course the
above setup gives the most flexibility but significantly lower
cost alternatives are possible if very specific stations want
to be built or if the use of very specific sensor
configurations is desired (so no gravity shields would be used
and the sensors would just be soldered where needed).

Building a DIY <control
infrastructure for a
hydroponic crop: Part one

Controlling an entire hydroponic crop using electronics is not
a trivial task. This includes everything from the automated
control of things 1like relative humidity and ambient
temperature, to other variables, such as lights, solution pH,
conductivity and temperature. Many paid solutions exist in the
market, but, in my experience, none of them offer enough
flexibility to accommodate all potential environments, as all
the ones I know are closed source and do not allow users to
readily modify the firmware/software used to fit the user’s
particular needs. Through the past 5 years I have setup
control infrastructures across several different crops and
have usually done so using an entirely DIY infrastructure that
focuses on flexibility and power for the end user. In this
post I want to talk about how this setup usually works and why

https://scienceinhydroponics.com/2020/08/building-a-diy-control-infrastructure-for-a-hydroponic-crop-part-one.html
https://scienceinhydroponics.com/2020/08/building-a-diy-control-infrastructure-for-a-hydroponic-crop-part-one.html
https://scienceinhydroponics.com/2020/08/building-a-diy-control-infrastructure-for-a-hydroponic-crop-part-one.html

I came to these design choices.

Listens for changes in calibration
parameter values

Takes measurements like
temperature, humidity, CO2

Broadcasts measurements
continuously to network

Measuring stations

Computer £ g wifi network: -« > Control Stations

Reads sensor data and . .
e e Looks for control instructions

and executes accordingly

Evaluates which controls are
reguired and success of
control actions

Broadcasts control successifailure
Broadcasts control instructions signals

to control devices

Can broadcast changes in
calibration variable parameters

Holds control related variables
and alarm related variables

Web interface for user interaction

Usual network configuration I used to built electronic
monitoring/control infrastructures for hydroponics

In general the infrastructure I setup relies on the use of
wifi for the communication of the devices. This is because
it’s usually the easiest to setup, although it might not be
the most power efficient or the most desirable in all cases. I
generally divide devices into three camps. There is a main
device — which is usually a capable computer — which serves as
the “central hub” for the entire setup. This computer contains

the main database that stores all information about devices,
sensor readings, calibration variables, alarms, etc and is in
charge of deciding which control actions to take given the
sensor reading it is receiving and the control devices it has
access to. This central computer usually hosts a website as
well, where the user can easily modify things, issue manual
control actions, add new devices, set up alarms, etc. The
computer can be duplicated as well, to prevent this from being
an important point of failure. In several cases we have used a
raspberry pi to play this role.

The second and third group of devices are usually Arduinos
whose main role is to either take readings (measuring
stations) or execute control actions (control stations). Some
arduinos might actually serve both purposes as an arduino can
often be fit with things like pH/EC probe readings as well as
relays that control peristaltic pumps that are used to push pH
up/down or nutrient solution into a solution tank. It is worth
noting that the decision of what to do for control is never
taken by any control station but all they do is interpret
control messages from the computer and then try to execute
those actions and then give back some response of what’s going
on. Measuring stations, on the other hand, are only trusted
with the task of taking some measurement from the environment
and broadcasting it to the network, the only thing they might
listen for are messages issued by the computer to modify their
calibration, whenever this is required.

=]

The arduino nano includes wifi capabilities and offers a very
convenient low-power core for measuring stations that do not
require high power to operate sensors

Measuring stations can be fully customized to have as many
reading as the user desires and can be implemented to do all
sorts of things, from measuring temperature and humidity, to
measuring air-flow, to measuring media water content. This
allows for dozens of different temperature and humidity

reading spots using different kinds of sensors, to monitoring
things such as irrigation flow and solution ORP and dissolved
oxygen values.

The entire setup relies on the use of the mosquitto (mqtt)
protocol in order to have each device brodcast a specific
topic with a specific reading that other devices can subscribe
to. The computer will listen to all the devices it sees within
its database and it is therefore easy for a new device to be
added by a user, since it only requires the inclusion of the
device into the database. The measure/control stations can
subscribe to the specific topics their interested in for
calibration or control actions and can act whenever they
receive these messages. All the devices are automatically
added to a web platform and alarms can easily be set for any
of the measurements carried out by the measuring stations.

A big advantage of this approach is that control actions can
be made as complex as the user desires. This includes doing
things like implementing reinforcement learning based controls
for things like temperature/humidity allowing the computer to
use a wide array of measurements in order to take control
actions, not relying solely on the measurement of one limited
sensor to make these decisions. This allows a computer to use
information such as outside temperature to decide how much air
it wants to get into the facility for control, or how long it
wants to turn on humidifiers in order to allow the desired
level of humidity within a grow room.

With all this said, DIY control is definitely not the easiest
route to take. Implementing something like the above will
require the purchasing of a lot of different electronics -
which are sometimes expensive depending on what the user wants
— and does require a lot of time programming firmware and
deploying software so that the desired outcome can be
achieved. With that said, the unparalleled level of control is
often worth it and can be accompanied by substantial gains in
the information available to the user, which often leads to

improvements in yields and the significantly quicker catching
of potentially important problems.

On the next part of this post, I will talk about some of the
practical aspects of this project, such as which arduinos and
sensors I usually use and how these are setup to communicate
with the central computer. If you want to learn more about how
I can help you set this up for your crop please feel free to
contact me using the website’s contact form.

The best cheap sensor setup
for relative humidity 1in
hydroponic automation
projects

I have written in the past about humidity in hydroponics,
especially how accurately measuring humidity is hard due to
problems with the sensors. In my experience during the past 5
years with different humidity sensors in Arduino based
automation projects I have tried different chipsets and have
now reached a conclusion about my preferred chipset setup for
the measurement of humidity in hydroponics. Today I want to
share with you my experience with different sensors, what I
think the best overall setup is and where you can buy breakout
boards that use these chipsets to use them in your projects.

https://scienceinhydroponics.com/contacts
https://scienceinhydroponics.com/2020/04/the-best-cheap-sensor-setup-for-relative-humidity-in-hydroponic-automation-projects.html
https://scienceinhydroponics.com/2020/04/the-best-cheap-sensor-setup-for-relative-humidity-in-hydroponic-automation-projects.html
https://scienceinhydroponics.com/2020/04/the-best-cheap-sensor-setup-for-relative-humidity-in-hydroponic-automation-projects.html
https://scienceinhydroponics.com/2020/04/the-best-cheap-sensor-setup-for-relative-humidity-in-hydroponic-automation-projects.html
https://scienceinhydroponics.com/2019/07/five-important-things-you-should-know-about-humidity-in-hydroponics.html

One of my favorite sensors for the measurement of relative
humidity in hydroponics

The first sensors I ever tried for measuring humidity 1in
hydroponics where the DHT1l sensors which are the cheapest but
have really poor accuracyand limited range. I then moved to
the DHT22 sensors (also known as AM2302 sensors) which in
theory have an accuracy of +/-3% but I had a lot of problems
with the sensors dying on me as a function time, this was
particularly the case when the sensors were places near plant
canopy, where they could be exposed to much higher levels of
humidity than those placed to measure overall room humidity
values. We also tried using them in a commercial tomato
greenhouse and the sensors placed near canopy failed miserably
after only a couple of months. More infuriatingly, the sensors
that did not outright die seem to have lost a lot of their
sensibility, with increased hysteresis in their measurements
as humidity changed through the days.

Manufacturers' Specification

AMZ23202 AMZ2320/AM2221 EHT71 HTU21D Ei7021 BME2ED
Operating Range 0-100 0-100 0-100 0-100 0-100 0-100
Absclute accuracy £3% {10-90%) £3% (10-90%) £3% (20-80%) £3% {20-80%) 239 (0-80%)
(%RH, 25°C) +5% (<10, >50%) +5% (<10, >30%) +5% (<20, >80%) +5% (<20, >80%) 59 (=80%)
Repeatability (%) 10.3 10.1 £0.1 : £0.025
Long term stability
(%% per year)

+3% (20-80%)

0.5 0.5 0.5 0.5 0.25 0.5

18 (with cover)

i/e Response (sec) 3] g] 17 [without)

3.1-5.5(AM2320)
2.6-5.5(AM2321)

This table of properties was taken from this website.

Voltage supply (V) 3.3-5.5 2.4-5.5 1.5-2.8 1.9-2.6 1.71-2.6

I then moved to the SHT1x humidity sensors — which were much
better and more reliable — and these sensors became my go-to
sensors for around a year. However I was increasingly

http://www.kandrsmith.org/RJS/Misc/Hygrometers/calib_many.html

concerned about problems with systematic errors, since all
these sensors use a capacitive technique to measure relative
humidity, so I decided to try other sensors that used
different measuring methods. The only cheap sensor I could
find using an alternative measuring technique was the BME280 —
released within the last two years — which turned out to be a
very reliable sensor. My default setup for measuring humidity
has now become a 2 sensor setup where I connect one SHT1x and
one BME280 sensor board to an Arduino and then make sure both
sensors are within 2% to take a value or issue a control
action. If the deviation between both sensors is above 2% then
I make sure to be notified about it so that I can see if there
is any problem with either of them. I was happy to learn that
my conclusions are also supported by other people who have
systematically evaluated humidity sensors.

Although I usually prefer the sensors from dfrobot for regular
builds, as they are easier to use, you can find breakout
boards or more elaborately packaged sensors with these
chipsets at other places. In particular I have found the mesh
protected SHT-10 sensor from Adafruit to be particularly
useful for more demanding environments (like canopy,
greenhouses or just outdoor sensing) which might be suitable
for those of you looking for a significantly more robust
solution to measure humidity, even if at a higher price.
Adafruit also carries low cost breakout boards for the BME280
and the SHT-31D, which is a more accurate chip of the SHT
family. In any case, I wouldn’t bother with the AM family of
sensors, as they have proven to be less reliable than the
above mentioned counterparts.

Last but not least, please make sure to contact me if you’re
interested in getting my help or input to build a custom made
sensing setup for your hydroponic facilities. Having wireless
sensing and controls, all integrated into a centralized
sensing unit, is perhaps one of the best ways to get reliable
real-time data and enhance the control and decision making

https://www.dfrobot.com/product-80.html?search=SHT1x&description=true
https://www.dfrobot.com/product-1606.html?search=BME280&description=true
http://www.kandrsmith.org/RJS/Misc/Hygrometers/calib_many.html
https://www.adafruit.com/product/1298
https://www.adafruit.com/product/2652
https://www.adafruit.com/product/2857

processes within your hydroponic facility.

Creating a robust PpH/EC
monitor for hydroponics using
Atlas probes and an Arduino

A few months ago I talked about how you could build a simple
sensor station for your hydroponic projects using an arduino
(see here). However this small project used the relatively
cheap — but I have found not very robust — pH/EC probes and
boards from gravity which makes it a poorer choice for a more
professional project aiming to constantly monitor the pH/EC of
a production hydroponic setup. Today I am going to tell you
how you can build a dedicated pH/EC monitor using the robust
pH probes from Atlas, which also have several important
advantages we will be discussing within this post. I would
also like to point out that Atlas is not paying me anything to
write this post, I write just because of my experience using
their probes.

The pH/EC probes from gravity have several problems when
looking for a robust sensing setup. The first issue they have
is that the probes are not rated for constant immersion, so
they are damaged if you place them within solution the whole
time which is probably what you want to do within a production
hydroponic setup. The second issue is that the boards require

https://scienceinhydroponics.com/2017/08/creating-a-robust-phec-monitor-for-hydroponics-using-atlas-probes-and-an-arduino.html
https://scienceinhydroponics.com/2017/08/creating-a-robust-phec-monitor-for-hydroponics-using-atlas-probes-and-an-arduino.html
https://scienceinhydroponics.com/2017/08/creating-a-robust-phec-monitor-for-hydroponics-using-atlas-probes-and-an-arduino.html
http://scienceinhydroponics.com/2017/05/a-simple-arduino-based-sensor-monitoring-platform-for-hydroponics.html

cable connections to the Arduino which introduces a
significant amount of noise that can causes problems with
measurements. Due to poor isolation there can also be issues
with the gravity boards when measuring EC/pH at the same time.
To overcome these issues we can use probes and boards from
atlas which have the advantage of having no cable connections
to the Arduino — connections are through pins directly — plus
the probes are rated for constant immersion and are much more
robust. These are the things we would need to build this
project:

= Arduino UNO R3 — 23.90 USD

= LCD 12864 screen shield — 24.05 USD
= Mini tentacle shield — 85.00 USD

= pH kit from Atlas — 149.15 USD

= EC kit from Atlas — 195.71 USD

= Arduino headers — 12.99 USD

As you notice this sensor project is much more expensive than
the sensor station I had discussed before, with a price tag of
around 490 USD (not including shipping). However when looking
for a robust setup you definitely should favor the additional
expense as this will likely be paid off with much longer
service times.

When you get the pH/EC kits the first thing you want to do is
change your EZO boards (the small circuit boards that come
with them) to i2C mode so that you can use them with your mini
tentacle shield. To do this follow the instructions here,
follow the instructions in the “Manually switch between UART
and I2C” section, use female jumpers to make this process
easier. Note that you can use your LCD shield analogue 5V and
ground pins when you need power within the process.

//Libraries

#include <U8glib.h>
#include <stdio.h>
#include <Wire.h>
#include <Arduino.h>

https://www.amazon.com/Arduino-Uno-R3-Microcontroller-A000066/dp/B008GRTSV6
https://www.dfrobot.com/product-1084.html
https://www.atlas-scientific.com/product_pages/components/tentacle-shield-mini.html
https://www.atlas-scientific.com/product_pages/kits/ph-kit.html
https://www.atlas-scientific.com/product_pages/kits/ec_k1_0_kit.html
https://www.amazon.com/Hilitchi-2-54mm-Arduino-Stackable-Assortment/dp/B01IPA8JZY/ref=sr_1_4?s=electronics&ie=UTF8&qid=1502890467&sr=1-4&keywords=arduino+headers
https://www.whiteboxes.ch/tentacle/#switch-i2c
https://www.amazon.com/40pcs-Female-2-54mm-Jumper-Wires/dp/B007MRQC1K

#define TOTAL CIRCUITS 2
///---- variables for pH/EC tentacle shield ------- //
#define TOTAL CIRCUITS 2

char sensordatal[30];
byte sensor bytes received = 0;

byte code = 0;

byte in char = 0;

int channel ids[] = {99, 100} ;

VA e el //

// EC values // CHANGE THESE PARAMETERS FOR EC PROBE
CALIBRATION
#define EC_PARAM A 0.00754256

//pH values // CHANGE THESE PARAMETERS FOR PH PROBE
CALIBRATION

#define PH PARAM A 1.0

#define PH PARAM B 0.0

#define XCOL SET 55
#define XCOL SET2 65
#define XCOL SET UNITS 85

[/
USGLIB NHD C12864 u8g(13, 11, 10, 9, 8);
float pH, EC;
VR

void draw() {
u8g.setFont(u8g font 04b 03);
u8g.drawStr(0,11,"pH:");
u8g.setPrintPos (XCOL SET,11);
u8g.print(pH);
u8g.drawStr(0,21,"EC:");
u8g.setPrintPos (XCOL SET,21);

u8g.print(eC);
u8g.drawStr(XCOL SET UNITS,21,"mS/cm");
}

void read tentacle shield(){

for (int channel = 0; channel < TOTAL CIRCUITS; channel++) {
Wire.beginTransmission(channel ids[channel]);
Wire.write('r');
Wire.endTransmission();
delay(1000);

sensor bytes received = 0;
memset(sensordata, 0, sizeof(sensordata));

Wire.requestFrom(channel ids[channel], 48, 1);
code = Wire.read();

while (Wire.available()) {
in_char = Wire.read();

if (in_char == 0) {
Wire.endTransmission();
break;

}

else {

sensordata[sensor bytes received] = in char;
sensor bytes received++;
}
}
if (code == 1){
if (channel == 0){
pH = atof(sensordata);
pH = pH*PH PARAM A + PH PARAM B;

}
i

f (channel == 1){

atof(sensordata);

(
C
C = EC*EC_PARAM A;

E
E

}

void setup()

{
pinMode(13,0UTPUT);
Serial.begin(9600);
u8g.setContrast(0);
u8g.setRot180();

}

void loop()
{

digitalWrite(13, HIGH);
delay(800);

digitalWrite(13, LOW);
read tentacle shield();

u8g.firstPagel();
do {
draw();

}
while(u8g.nextPage());

}

Once you have changed the EZO boards to i2C you can now plug
everything into the arduino and upload the code into your
arduino. Plug the EZO boards into the mini tentacle shield and
then plug that shield into the arduino. You’ll notice that the
EZO boards make it impossible to plug the LCD screen directly
on top — as the EZO circuits make the shield too tall — so you
should use stackable headers to extend the connections so that
you can plug the LCD screen on top without any problems. Make
sure you download and install the U8glib library in your
arduino IDE before uploading the code.

As with the previous code you’ll notice there are variables
called PH PARAM A, PH PARAM B and EC PARAM A within the
beginning of the code that you should change in order to
calibrate your probes. Follow the instructions about

https://github.com/olikraus/u8glib

calibration I gave in the previous post in order to figure
this out. Using the calibration solutions that come with your
kits you’ll be able to perform this calibration procedure.
Whenever you want to calibrate your probes you should reset
these variables to their original values, reupload the code
and retake measurements.

Following this guide you will have a very robust sensor setup
using very high quality probes. These probes are also coupled
with a board that has no wire connections with the arduino,
offering very high quality readings with very small amounts of
noise. Additionally the LCD shield opens up the possibility to
add more sensors to your station so that you can monitor,
temperature, humidity, and carbon dioxide potentially from a
single place.

http://scienceinhydroponics.com/2017/05/a-simple-arduino-based-sensor-monitoring-platform-for-hydroponics.html

