
How  to  prepare  pH  4  and  7
buffers from scratch without
using a pH meter
I wrote a post in the past about how you could prepare pH
buffers in order to calibrate your pH meter if you happen to
already have a calibrated pH probe. This can generate decent
results if the initial calibration of the probe is excellent
and the sensitivity of the probe is high. This however might
not be a possibility for some people – given that their pH
probe might not be calibrated to start with – so in today’s
post I am going to tell you how you can prepare your own pH 4
and 7 buffers without having any other tools but a scale,
distilled water and some raw salts. This tutorial will be made
assuming you’re preparing 500mL of each buffer but feel free
to scale this up or down as you wish (these buffers are meant
to give you a total 0.1M buffer concentration). Note that pH
depends on temperature, these buffers are meant to give pH
values of 4 and 7 at 25C.

To  prepare  these  buffers  you  will  need  the  following
materials:

A scale that can weight with a precision of +/- 0.001g
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Potassium citrate (food grade)
Anhydrous Citric acid (food grade)
Potassium monobasic phosphate (food grade)
Potassium dibasic phosphate (food grade)
Distilled water
Two  clean  glass  bottles  to  prepare  and  store  the
buffers. (I would recommend these, but any clean glass
containers would do)

Follow these steps to prepare the pH 4 buffer:

Weight exactly 5.259g of potassium citrate and transfer1.
that amount to the glass bottle
Weight exactly 6.309g of citric acid and transfer the2.
solid to the same glass bottle
Fill the bottle to around 250mL using distilled water3.
Mix the solids using a glass rod or any other inert4.
mixing utensil until fully dissolved
Fill the bottle to 500mL using distilled water.5.
Label the flask clearly so that you know this is the pH6.
4 buffer

Follow these steps to prepare the pH 7 buffer:

Weight exactly 3.369g of potassium dibasic phosphate and1.
transfer that amount to the second glass bottle
Weight exactly 4.172g of potassium monobasic phosphate2.
and transfer the solid to the same glass bottle
Fill the bottle to around 250mL using distilled water3.
Mix the solids using a glass rod or any other inert4.
mixing utensil until fully dissolved
Fill the bottle to 500mL using distilled water.5.
Label the flask clearly so that you know this is the pH6.
7 buffer

The above should provide you with pH 4 and 7 buffer solutions
that should be relatively precise. The exact volume of the
solution is not critical, as the volume only has a strong
effect on the buffering capacity but not on the final pH,
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especially at relatively high buffering strengths. However, if
you want to have more precision use 500mL volumetric flasks to
prepare the solutions. The error in these buffers will depend
on the purity of the salts used – which is why higher purity
food grade salts are recommended above – as well as in the
accuracy of the weighting and transferring processes. In order
to obtain a higher accuracy you would need to purchase more
expensive  analytical  grade  salts  and  also  use  volumetric
flasks to prepare the solutions, so that you can prepare them
at the exact concentration intended.

Another limitation of the above buffers is that they do not
contain any sort of preservative and they are both prepared
with  food  grade  substances  that  can  attract  fungi  and
bacteria. For this reason the above buffers will probably not
last for a significant amount of time and should probably be
discarded within a couple of weeks. However the chemicals used
here are very cheap so – with the amounts purchased above –
you should be able to prepare as much buffering solution as
you might need. Note that the solutions can also be frozen in
order to increase their shelf life, although keep in mind that
since pH depends on temperature you will need to wait for them
to reach room temperature before taking a reading.

It is also worth mentioning that these buffers will both be
completely transparent, since they are prepared without any
dies in order to give the maximum possible accuracy in the pH.
However you can add a very small amount of food coloring to
each  one  to  provide  a  distinct  color  without  causing  a
significant change in the pH, less than half a drop should be
enough to give your solutions a distinct hue.

I would advice you do a pH check with a pH meter calibrated
using a normal commercial solution the first time you prepare
these solutions. This is just to be sure that you followed the
procedure  correctly  and  the  resulting  buffer  is  of  the
intended quality. Once you do this you should be able to
create as much buffer as you desire without any problems.



Leave a comment with your experience!

Understanding  the  carbonic
acid/bicarbonate  buffer  in
hydroponics
I  have  written  several  articles  before  about  pH  and  it’s
importance in hydroponic culture (1, 2, 3, 4). However I have
yet  to  write  a  detailed  explanation  of  one  of  the  most
important  buffering  systems  in  hydroponics,  which  is  the
carbonic acid/bicarbonate buffer. This buffer is significantly
more  complicated  than  the  simpler  buffer  created  using
phosphoric acid species, as it not only relies on ions present
in solution but also on the partial pressure of carbon dioxide
in the atmosphere. In this article I will attempt to explain
this buffering system in detail, shining some light into the
limitations of this buffer and how changing different key
variables  can  fundamentally  affect  the  way  it  works  in
hydroponics.

Chemical reactions involved in the carbonic acid/bicarbonate
buffer. Taken from here.
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A buffer is nothing more than a pair of chemical species in
solution that are present at a certain pH, that can react with
additional  H3O+  or  OH-  ions  that  are  introduced  into  the
solution. Since these ions control the value of pH, anything
that prevents their concentration from changing will keep the
pH stable. Distilled water, for example, has absolutely no
buffering capacity since within it there is nothing that can

react with incoming H3O+ or OH– ions that are added to the
solution. Distilled water should therefore have a pH of 7.0,
it does not because we live in an environment where an acid
can always be generated from the air. This acid – carbonic
acid – is generated in water whenever it’s put into contact
with  a  carbon  dioxide  containing  atmosphere.  This  makes
distilled water have a pH of around 5.6.

To be able to calculate the pH we need to consider all the
chemical  equilibrium  reactions  that  happen,  these  are
summarized here and in the image above. We must consider that
carbon  dioxide  will  dissolve  in  water  to  always  satisfy
Henry’s  law,  that  dissolved  carbon  dioxide  will  be  in
equilibrium  with  carbonic  acid,  that  carbonic  acid  can

dissociate into a H3O+ ion and a bicarbonate ion and that a
bicarbonate ion can further dissociate into an additional H3O+
ion and a carbonate ion. To solve all of this we must also
consider that charge neutrality must be preserved, meaning
that the sum of all molar charges of all positive ions must be
equal to the molar charges of all negative ions. To carry out
these calculations I routinely use the freely available Maxima
software. Below you can see the code I use to solve this
system in Maxima (constants are taken from here):

[kw : 10^(-14.0), kh: 1.7*10^(-3.0), kc1: 2.5*10^(-4.0), kc2:
4.69*10^(-11.0), co2: 1.32*10^-5];
log10(x) := log(x)/log(10) ;
pH(x) := float(-log10(x));
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float(solve([h*oh=kw,  h  =  2*co3+hco3+oh,  kh=h2co3/co2,
kc1=(hco3*h)/h2co3, kc2=(co3*h)/hco3],[oh, co3, hco3, h2co3,
h]));

This is the solution obtained for the molar concentrations
(rounded for clarity):

oh    = 4.21*10^-9
co3   = 4.68*10^-11
hco3  = 2.36*10^-6
h2co3 = 2.24*10^-8
h     = 2.37*10^-6

After  executing  this  code  you  will  get  several  different
possible solutions, but the only one that interests us is the

one where the H3O+ (h) concentration is a positive number (this
solution is showed above). We can then use the pH function to
calculate the value of pH for this H30+ concentration, which
gives us a value of 5.62, this matches the real measurement of
a  distilled  water  solution  at  25C  under  a  387ppm  carbon
dioxide atmosphere. Note that the amount of none dissociated
acid  in  solution  is  very  small.  Taken  to  mass,  the
concentration of carbonic acid is 0.00138 ppm. However the
concentration of bicarbonate is significantly greater, at 3.6
times the concentration of undissociated carbonic acid. This
explains why the pH drops so much, since a significant amount
of  the  generated  carbonic  acid  ends  up  dissociating  and

contributing H3O+ ions to the solution. This also shows you how
little  acid  is  needed  to  drop  the  pH  of  an  unbuffered
solution.

To create the buffer with the biggest possible strength we
would need to add enough strong base to shift the pH to the
point  where  the  pH  equals  the  pKa  (which  is  just  -
Log(equilibrium constant)) of the joint reactions created from
the reaction of carbon dioxide with water to create carbonic
acid  and  the  subsequent  dissociation  of  this  acid  into



bicarbonate and H3O+. This point is at 6.3 under atmospheric
conditions at 25C. This can be achieved with the code below:

[kw : 10^(-14.0), kh: 1.7*10^(-3.0), kc1: 2.5*10^(-4.0), kc2:
4.6910^(-11.0), co2: 1.32*10^-5, h:10^(-6.3)];
float(solve([hoh=kw,  base+h  =  2co3+hco3+oh,  kh=h2co3/co2,
kc1=(hco3h)/h2co3,  kc2=(co3h)/hco3],[oh,  co3,  hco3,
h2co3,base]));

This  is  the  solution  obtained  for  the  molar
concentrations(rounded  for  clarity):

oh    = 1.99*10^-8
co3   = 1.04*10^-9
hco3  = 1.11*10^-5
h2co3 = 2.24*10^-8
base  = 1.07*10^-5

The pH here is set to 6.3 and we can see that to get there we

would need to add a base at a concentration of 1.07*10-5.0. If
this base was KOH this would imply adding it at a rate of 0.6
ppm. We can see how the pH changes as a function of adding
base or acid from this point. If at this point we decided to
double the addition of strong base we would get to 6.57,
tripling it would take us to 6.73 and adding 10 times more
base would take us to 7.25. The buffer is indeed resisting the
increase in pH by basically drawing CO2 from the air to react
with the incoming base as base is added to the solution.
However you might notice that under equilibrium conditions the
buffering capacity of this system is very low. Just 6 ppm of a
KOH equivalent strong base addition can strongly affect the pH
– taking it from 5.6 to 7.25 – so how can the carbonic
acid/bicarbonate buffer be effective at all in hydroponics?

The answer is in the first image in this post. The equilibrium
reaction between carbonic acid and water plus carbon dioxide
in  water  (k23/k32)  is  fundamentally  slow.  We  can  take
advantage of this by generating larger amounts of carbonate
species in solution through the use of exogenous carbonate or



bicarbonate additions and then setting the pH at a lower value
to generate more carbonic acid, this acid will then take some
significant time to reach equilibrium. This is the reason why
using  tap  water  with  a  significantly  high  alkalinity  can
provide a surprisingly stronger buffer than what would be
expected  at  equilibrium  and  it  also  has  some  interesting
consequences in the use of nutrient solutions.

Let’s  consider  a  case  where  there  is  no  decomposition  of
carbonic acid – let’s suppose it’s extremely slow – and say we
add 100 ppm of potassium carbonate into a solution and then
set the pH back to 5.8 using phosphoric acid. In this case the
predominant reactions in solution would be the dissociation of
dihydrogen phosphate to hydrogen phosphate and H3O+ and the
carbonic  acid  dissociation  discussed  before.  In  order  to
properly  consider  this  case  we  must  also  introduce  two
additional equations, mainly the mass balance equations for
the phosphate and carbonate species, since this time we are
assuming no carbon dioxide is ever lost to the atmosphere.
Note that I have changed the equilibrium constant for the

carbonic acid reaction here to 10-6.3 where carbonic acid is now
“apparent carbonic acid”. You can see the equation system and
solution below:

[kw  :  10^(-14.0),  kh:  1.7*10^(-3.0),  kc1:  10^-6.3,  co2:
1.32*10^-5,  kp:10^-7.2,  total_p:  1.7*7.2310^-4,  total_c:
7.23*10^-4];

float(solve([h*oh=kw,  total_c=hco3+h2co3,  total_p=h2po4+hpo4,
2*total_c+h  =  hco3+oh+h2po4+2*hpo4,  kc1=(h*co3h)/h2co3,
kp=(hpo4*h)/h2po4],[hco3, h2co3, h2po4, hpo4, h, oh]));

This  is  the  solution  obtained  for  the  molar
concentrations(rounded  for  clarity):

hco3   = 1.72*10^-4
h2co3  = 5.50*10^-4
h2po4  = 0.00118
hpo4   = 4.64*10^-5



h      = 1.60*10^-6

The final pH of this solution is very close to 5.8 and the
concentration of P is 47.9 ppm with K at 38.10 ppm. Notice
however that apparent carbonic acid has a concentration of

5.50*10 - 4  M,  which  implies  that  the  system  is  not  at
equilibrium since this amount is significantly larger than
what  we  would  expect  from  Henry’s  law.  If  we  reduce  the
concentration  of  carbonic  acid  to  half  then  the  pH  will
increase to 6.01, as we would expect from extracting an acid
from the solution. The implication is that – with time – the
pH of this solution is going to slowly increase, as carbonic
acid decomposes and the solution reaches an equilibrium with
the  atmospheric  carbon  dioxide  level.  This  is  also  why
nutrient solutions that are prepared with tap water high in
carbonates and then aerated will tend to show a rapid increase
in pH – even if the solution is not fed to plants – as the
reaching of equilibrium is accelerated by the agitation of the
solution and the contact with air (that allows CO2 in solution
to escape).

As  soon  as  the  above  solution  is  prepared  it  offers  a
substantially superior buffering capacity when compared with a
solution containing only phosphates. This is why water with
high alkalinity tends to provide better pH stability in drain
to waste type systems when compared with solutions prepared
with RO water. This water contains a significant amount of
carbonates that are turned into carbonic acid and bicarbonate
as  soon  as  the  pH  is  lowered  to  the  pH  range  used  in
hydroponics. As long as the solution is used quicker than the
carbonic acid decomposes, there will be a substantial increase
in pH stability.

If you are using RO water or water with low alkalinity to
prepare your solutions you can obtain a similar effect by
adding 100-200 ppm of potassium carbonate before you start
preparing  the  nutrient  solution,  you  can  similarly  use



bicarbonate but I would recommend using potassium carbonate,
as it is cheaper. It would also be advisable to use the
solution  as  fast  as  possible,  since  time  will  cause  the
solution to reach equilibrium and the pH to increase. This
effect will take much longer if the CO2 concentration is higher
– which is true for setups that use enriched CO2 – or if the
temperature is lower, which increases the solubility of CO2.

A guide to different pH down
options in hydroponics
The  control  of  pH  in  hydroponic  nutrient  solutions  is
important. Plants will tend to increase the pH of solutions in
most cases – as nitrate uptake tends to dominate over the
uptake of other ions – so most growers will tend to use pH
down much more than they use pH up. While most growers prefer
to use concentrated strong acids, there are a wide variety of
different  choices  available  that  can  achieve  different
outcomes at different cost levels. In this post I want to talk
about different pH down options in hydroponics, along with
some of their advantages and disadvantages.
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Hydrangeas change color as a response to different pH values
in soil

The first group of pH down chemicals are strong acids. These
are technically acids with very low pKa values, meaning they
react instantly with water to generate at least one mole of
hydronium  for  each  mole  of  added  acid.  They  offer  the
strongest ability to drop pH per unit of volume, which makes
them more cost effective. However the fact that they often
need to be diluted to make the pH addition process practical –
because of how much the concentrated forms can change pH – can
make their use more difficult than other forms of pH down.
These are the most common options:

Phosphoric acid (from 20 to 85% pure): This acid doubles as a
plant  nutrient,  meaning  plants  will  be  affected  by  the
phosphorus added. It is commonly used in food – so food grade
phosphoric acid can be bought cheaply – it also has additional
deprotonations with strong buffering at a pH value of 7.2 with
buffering capacity against bases getting stronger as the pH
goes down all the way to 6.2. This is the most commonly used
acid by hydroponic growers.

Sulfuric acid (from 20 to 98% pure): This acid is commonly
used  in  car  batteries  and  offers  the  largest  pH  dropping
ability per unit of volume among all the strong acids. It is
however  important  to  use  food  grade  sulfuric  acid  in
hydroponics as normal battery acid can include some metallic
impurities – from the fabrication process of sulfuric acid –
that might negatively affect a hydroponic crop. Food grade
sulfuric acid is safe to use in hydroponics. A big advantage
is that plants are quite insensitive to sulfate ions – the
nutrient provided by sulfuric acid – so adding sulfuric acid
does not really affect the nutrient profile being fed to the
plants.  Note  however  that  most  battery  acid  products  in
developed countries are also ok, as the quality of these acids
demands the metallic impurities (more commonly iron) to be
quite low. If in doubt, you can do a lab test of the sulfuric



acid to see if any impurities are present.

Nitric  acid  (from  30-72%  pure):  This  acid  also  provides
nitrate ions to plants, so it also contributes to a solution’s
nutrient  profile.  It  is  however  more  expensive  than  both
phosphoric and sulfuric acids and more heavily regulated due
to its potential use in the fabrication of explosives. The
acid itself is also a strong oxidant, so storage and spillage
problems  are  significantly  worse  than  with  phosphoric  and
sulfuric acid. Although this acid can be used in hydroponics,
it is generally not used by most growers due to the above
issues.

Diagram showing the dissociation of a strong vs a weak acid

The second group of pH down chemicals are weak acids. These
are acids that do not generate at least one mole of hydronium
ions per mole of acid when put in solution, but do provide a
pH down effect as some hydronium ions are generated. This
means that larger additions will be needed to cause the same
effect but at the same time their handling is usually much
safer than for strong acids. Here are some options that could
be used as a pH down.

Common food grade organic acids (citric acid, acetic acid,
etc): Organic acids are a very low cost way to lower the pH of
a hydroponic solution as many of these are available off the
shelf in super markets in food grade qualities. The main issue



with  organic  acids  –  which  anyone  who  has  used  them  has
probably experimented – is that the effect of the acids does
not seem to hold (pH goes up quickly after the acid is added
and the solution comes into contact with plants). This is
actually  caused  by  the  fact  that  plants  and  microbes  can
actually use the conjugated bases of these ions nutritionally,
causing  an  increase  in  pH  when  they  do  so.  The  initial
addition of say, citric acid, will drop the pH – generating
citrate ions in the process – these will then be absorbed by
microbes and plants, increasing the pH again rapidly. The use
of these acids is therefore not recommended in hydroponics.

Monopotassium phosphate (MKP): This salt contains the first
conjugate base of phosphoric acid and is therefore way less
acidic than it’s full on acid partner. Since it’s a solid its
addition is way easier to control compared to the acid and it
can  also  be  handled  safely  with  minimal  precautions.  It
provides both potassium and phosphorous to a solution – both
important nutrients – and therefore needs to be used carefully
when used as a pH down agent (as it significantly affects the
nutrient profile of the solution). Since it adds both a cation
that  helps  counter  pH  increases  by  plants  and  phosphate
species it provides a double buffering effect against future
pH increases. It is a very common ingredients of commercial pH
down solutions for this reason.

Monoammonium phosphate (MAP): Similar to the above, except for
the fact that this salt adds nitrogen as ammonium, which is a
nitrogen form plants are very sensitive to. Plants will uptake
ammonium preferentially over any other cation, so MAP provides
a very strong buffering effect against nitrate absorption,
with potential problems if too much is used (although this
depends on the plant species being grown). When MAP is used as
a  pH  down  its  addition  therefore  needs  to  be  carefully
controlled in order to avoid excess usage. Due to the presence
of  this  powerful  ammonium  buffer,  MAP  is  generally  very
effective at preventing future increases in pH, although this



might be at the expense of yields or quality depending on the
crop.

Potassium bisulfate: This salt contains the first conjugate
base of sulfuric acid and is therefore a powerful tool to
decrease the pH of a solution. The resulting sulfate ions
provide no chemical buffering effect, so the only buffering
effect in terms of plant absorption comes from the addition of
potassium ions, which can help mitigate nitrate absorption.
This salt is also considerably expensive compared with the two
above – which are commonly used fertilizers – and is therefore
seldom used in hydroponics.

Which  is  the  best  pH  down  solution?  It  depends  on  the
characteristics of the growing system. Generally a pH down
solution needs to be easy to administer, cheap and provide
some  increase  in  buffering  capacity  overtime  –  to  make
additions  less  frequent  –  so  the  pH  down  product  or
combination of products that best fits this bill will depend
on which of the above characteristics is more important for
each particular user.

People who use drain-to-waste systems usually go for stronger
acids, since they only adjust pH once before watering and then
forget  about  the  solution.  This  means  that  additional
buffering capacity in the solution is probably not going to be
very important and cost is likely the most important driving
factor. If injectors are used then the strong acids are often
diluted to the concentration that makes the most sense for
them and most commonly either phosphoric or sulfuric acids are
used.

For growers in recirculating systems options that adjust pH
with  some  added  buffering  capacity  are  often  preferred,
because  the  same  solution  is  constantly  subjected  to
interactions  with  the  plants.  In  this  case  it’s  usually
preferred to create a mixture of strong and weak buffering
agents so that both quick decreases in pH and some increased



protection  from  further  increases  can  be  given  to  the
solution. In automated control systems using something like a
concentrated  MKP  solution  is  preferable  over  any  sort  of
solution containing phosphoric acid, as issues from control
failures are less likely to be catastrophic.

Preparing  your  own  buffer
solutions for pH calibration
If  you  are  interested  in  learning  how  to  prepare  buffers
without needing a previously calibrated pH probe, please read
this post.

One of the most common tasks that hydroponics growers have to
carry out is to calibrate their pH meters in order to ensure
that the readings are accurate. To do this it is generally
necessary to buy somewhat expensive pH buffer solutions that
will  only  last  for  a  relatively  small  while  before  new
solutions have to be bought. However the fact of the matter is
that you don’t need to buy these solutions forever and you can
actually make your own using a few chemicals. This will be a
ton cheaper than buying buffer solutions and will allow you to
prepare solutions whenever you need them.
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To calibrate a pH meter for hydroponics we generally need two
different buffer solutions. One of these solutions needs to
have a pH of 4 and another one needs to have a pH of 7. You
can actually calculate the exact amount of chemicals you need
to add to create these buffer solutions but this assumes that
your water source is very pure (distilled water) and that your
chemicals  are  also  very  pure  and  standardized.  To  make
buffer solutions in less-than-ideal conditions we need to have
a calibrated pH meter, which means you will need to purchase
some buffer solutions, but only once.

After you have calibrated your pH meter ensure that the pH
meter measures the exact value that you want to prepare within
the buffer solution you have purchased. So make sure that the
pH meter when placed in the pH 7 buffer solution measures 7 if
this  the  solution  you  want  to  prepare  and  make  sure  it
measures 4 when placed in the pH 4 buffer solution if this is
what you want to make. Once you have the pH meter in a
coherent state with the solution you want to prepare we can
now proceed to make a new buffer solution.

To do this first fill a contained with tap water, make sure
you don’t fill it to more than 80% of its volume (to account
for some volume expansion when we add the solids) and use your
calibrated pH meter to measure its pH. For the pH 7 buffer add
10g of mono potassium phosphate per liter of solution (this

http://scienceinhydroponics.com/wp-content/uploads/2017/03/thermo_910168_2_1.jpg


doesn’t need to be exact) and stir the solution until it
dissolves. Then add KOH slowly, add it flake by flake, while
you measure the pH until your pH reaches 7.00. You will notice
that as the pH approaches 7 you will need more KOH to change
the pH. If you go a bit above the intended pH you can add mono
potassium phosphate to decrease it to 7.00. For the pH 4
solution you can perform the same procedure but instead add
20g per liter of citric acid and then add KOH slowly to
increase  the  pH  up  to  4.00.  After  preparation  leave  the
buffers to rest for a few hours and measure the pH again to
ensure that your solution pH remains stable. Remember to store
any prepared buffers in air-tight bottles and store these
bottles in dark places.

What we are doing with the above procedure is basically adding
two  acidic  substances  which  have  pKa  values  close  the  pH
values that interest us. Close to 7 (mono basic phosphate) and
close  to  4  (citric  acid).  We  then  generate  the  necessary
amount of conjugate base to reach the necessary pH level by
adding KOH. The buffer strength is established by the initial
amount of the acidic substance we add and the role of the KOH
is basically to move the buffer pH to the point where we want
it, a point that has a very high buffer capacity given the pKa
values of the acids used.

http://scienceinhydroponics.com/wp-content/uploads/2017/03/buffer_titration.gif


Of course the above is very far form the ideal analytical
procedure to prepare a buffer but it’s the easiest, cheapest
and most effective way to prepare a buffer that is accurate
enough  for  pH  meter  calibration  use  in  hydroponics  at  a
minimum cost. Sure, it requires an initial pH calibration –
which can be a bit inconvenient – but you can buy a small
couple  of  buffer  bottles  to  calibrate  and  then  prepare  2
gallons worth of pH buffer that you can then use to calibrate
your pH meters for a long time. If you use tap water to
prepare the above and some solids precipitate you can filter
them before storing your solutions. Then measure the pH again
after filtering to ensure that everything remains stable.


