The Potassium to Calcium ratio in hydroponics

To have a healthy hydroponic crop, you need to supply plants with all the nutrients they need. One of the most important variables that determine proper nutrient absorption, is the ratio of Potassium to Calcium in the nutrient solution. These two elements compete between themselves and have different absorption profiles depending on the environment, and the plant species you are growing. For this reason, it is important to pay close attention to this ratio, and how it changes with time, in your nutrient solution. In this post, we are going to examine peer-reviewed research about this ratio and how changing it affects the growth, quality, and yield of different plant species.

Two vital elements that compete against each other. Their ratio is fundamental to maximize yields and changes depending on the plant species, environmental conditions and absolute

Two ions with very different properties

Potassium and Calcium are very different. Potassium ions have only one positive charge and do not form any insoluble salts with any common anions. On the other hand, calcium ions have two positive charges and form insoluble substances with a large array of anions. This creates several differences in the way plants transport and use these two nutrients.

While potassium is transported easily and in high concentrations through the inside of cells, Calcium needs to be transported in the space between cells and its intracellular concentration needs to be very closely regulated. Calcium can also only be transported up the plant – from roots to shoots – while potassium can be transported up and down as it pleases.

Calcium transport – happening around cells – is heavily dependent on transpiration, which is what causes water to flow through this space. Potassium transport is not so closely related to transpiration, as it can move directly through the inside of cells in large amounts, which means it can be actively transported through the plant in an effective manner.

Note that the above is a broad over-simplification of Potassium and Calcium transport. If you would like to learn more about this topic, I suggest reading these reviews (1,2).

Competition between K and Ca

Potassium and Calcium are both positively charged, so they do compete to a certain extent. The competition is both because they compete for anions — which they need to be paired with for transport — and for the use of electrochemical potential, which they take advantage of to get transported across membranes. However, they do not have the same transport mechanisms, so the competition is limited.

Table 5. Interaction between EC and K:Ca ratio on nutrient concentration (g kg⁻¹) YFEL of cv. Red Mignonette 3 weeks (maturity) and 3YL 2 and 3 weeks after transplanting

EC	K:Ca	YFEL-wk 3			3YL	3YL	
$(dS m^{-1})$		К	Ca	Mg	Р	${ m wk} 2 { m K}$	wk 3 K
0.4	$1 \cdot 00 : 3 \cdot 50$	$31 \cdot 4$	11.1	$6 \cdot 1$	$7\cdot 2$	46.5	33.6
$0 \cdot 4$	$1 \cdot 25 : 1 \cdot 00$	$81 \cdot 2$	10.8	$3 \cdot 4$	$8 \cdot 5$	$64 \cdot 5$	$59 \cdot 9$
$0 \cdot 4$	$3 \cdot 50 : 1 \cdot 00$	$84 \cdot 5$	$10 \cdot 2$	$3 \cdot 7$	$8 \cdot 4$	$66 \cdot 9$	$63 \cdot 6$
$1 \cdot 6$	$1 \cdot 00 : 3 \cdot 50$	$89 \cdot 9$	$13 \cdot 2$	$3 \cdot 6$	8.7	$65 \cdot 2$	$61 \cdot 6$
$1 \cdot 6$	$1 \cdot 25 : 1 \cdot 00$	90.5	10.8	$3 \cdot 5$	$8 \cdot 7$	$64 \cdot 5$	$65 \cdot 2$
$1 \cdot 6$	$3 \cdot 50 : 1 \cdot 00$	$97 \cdot 8$	9.8	$4 \cdot 0$	8.6	$65 \cdot 7$	$65 \cdot 1$
$3 \cdot 6$	$1 \cdot 00 : 3 \cdot 50$	$86 \cdot 1$	7.3	$3 \cdot 9$	$9 \cdot 6$	$59 \cdot 7$	$59 \cdot 2$
$3 \cdot 6$	$1 \cdot 25 : 1 \cdot 00$	$94 \cdot 4$	$10 \cdot 1$	$3 \cdot 0$	8.5	60.8	$62 \cdot 6$
$3 \cdot 6$	$3 \cdot 50 : 1 \cdot 00$	$96 \cdot 6$	$4 \cdot 1$	$3 \cdot 3$	8.7	$67 \cdot 4$	$64 \cdot 4$
	l.s.d. ^A	9.9	$2 \cdot 3$	$0 \cdot 8$	$0 \cdot 9$	$5 \cdot 2$	$4 \cdot 1$

Table taken from this article (3)

The table above illustrates this point. This study (3) looked into different K:Ca ratios in the growing of lettuce and the effect these ratios had on yield, tip burn, and nutrient concentrations in tissue. You can see that at low total concentrations (0.4 mS/cm EC) the K in tissue is very low when the amount of Ca is high relative to K, while at higher EC values (1.6 mS/cm EC), the K concentration remains basically unaffected, even if the Ca concentration is 3.5 times the K concentration. While Ca competes effectively with K when the absolute concentration of both is low, this competition of Ca becomes quite weak as the concentration of K and Ca increase. At very high concentrations (3.6 mS/cm EC), the potassium does start to heavily outcompete the Ca, especially when the K:Ca ratio is high (3.5x).

The above is also not common to all plants. For some plants, the competition of Ca and K actually reverses compared to the results shown above. However, it is typical for low and high absolute concentration behaviors to be different, and for the influence of K or Ca to become much lower in one of the two cases.

Optimal K:Ca ratios

The K:Ca ratio has been studied for many of the most popularly grown plants in hydroponics. The table below shows you some of these results. It is worth noting, that the results that maximized yields, often did so at a significant compromise. For example, the highest yield for lettuce came at the cost of a significantly higher incidence of inner leaf tip burn. In a similar vein, the highest yields in tomatoes, at a 3:1 ratio, came at the cost of additional blossom end rot problems. This is to say that, although these ratios maximized yields, they often did so with consequences that wouldn't be acceptable in a commercial setup. For lettuce, 1.25:1 proved to be much more commercially viable, while still giving high yields.

Ref	Plant Specie	Optimal K:Ca		
4	Rose	1.5:1		
<u>5</u>	Tomato	3:1		
<u>6</u>	Tomato	1.7:1		
7	Marjoram	0.5:1		
<u>8</u>	Strawberry	1.4:1		
<u>9</u>	Cucumber	1:1		
<u>10</u>	Lettuce	3.5:1		

Optimal K:Ca — in terms of yields per plant — found for different plant species

You can see in the above results, that fairly high K:Ca ratios are typically required to increase yields. For most of the commercially grown flowering plants studied, it seems that a ratio of 1.5-2.0:1 will maximize yields without generating substantial problems in terms of Ca uptake. As mentioned above, higher K:Ca often push yields further, but with the presence of some Ca transport issues. A notable exception might be cucumber, for which the publication I cited achieved the maximum yield at a ratio of 1:1. However, good results were still achieved for 1.5:1.

Another important point about the ratio is that it is not independent of absolute concentration. As we saw in the previous section, the nature of the competition between K and Ca can change substantially depending on the absolute ion concentrations, so the above ratios must be taken within the context of their absolute concentration. The above ratios are generally given for relatively high EC solutions (1.5-3mS/cm).

Conclusion

The K:Ca ratio is a key property of hydroponic nutrient solutions. While the optimal ratio for a given plant species cannot be known *apriori*, it is reasonable to assume that the optimal ratio will be between 1:1 and 1:2 for most large fruiting crops and flowering plants that are popularly grown in soilless culture. This is especially the case if the hydroponic solution does not have a low EC. An optimal value below 1:1 is unlikely for most plants, although exceptions do exist in certain plant families that have peculiar Ca metabolisms.

To obtain the largest benefit, it would be advisable to run trials to optimize the K:Ca ratio for your particular crop, by changing the K:Ca ratio between 1:1, 1.5:1, and 2:1. You will likely see important differences when you carry out these trials, which will be useful to determine the highest yielding configuration for your setup. To perform these variations, it is usually easiest to change the ratio of potassium to calcium nitrate used in the nutrient solution.

Have you tried different K:Ca ratios? What do you grow and what has worked for you? Share with us in the comments below!

Understanding Calcium deficiency issues in plants

Calcium is one of the most difficult elements to properly supply to plants as its absorption is tightly linked to both chemical and environmental factors. It is very easy for growers to suffer from calcium-related problems, especially those who are growing under highly productive conditions. Issues such as bitter pit in apples, black heart in celery, blossom end rot in tomato, and inner leaf tip burn in lettuce, have all been associated with low levels of calcium in the affected tissues. In this post, we are going to discuss why this happens, how it is different for different plants, and which strategies we can use to fix the issue and get all the calcium needed into our plants' tissue. Most of the information on this post is based on these two published reviews (1, 2, 3).

Problems with Ca absorption rarely happen because there is not enough Calcium available to a plant's root system. Ιn hydroponic crops, these issues happen when ample Ca is available to plant root systems and can present themselves even when apparently excess Ca is present in the nutrient solution. Concentrations of 120-200 ppm of Ca are typically found in hydroponic solutions and we can still see cases where nutrient Ca-related problems emerge. This is because issues with Ca are mostly linked to the transport of this element from roots to tissues, which is an issue that is rarely caused by the concentration of Ca available to the plants. Most commonly these problems are caused by a plant that is growing under conditions that are very favorable and Ca transport fails to keep up with other, more mobile elements. As the plant fails to get enough Ca to a specific growing point, that

tissue will face a strong localized Ca deficiency and will die.

Calcium issues in different plants. Taken from this review. When looking into a Ca problem and how to fix it, we first need to understand which plant organ is lacking proper Calcium uptake. In tomato plants, for example, blossom end rot (BER) appears when Ca fails to reach a sink organ - the fruit while in lettuce, inner tip burn develops because Ca is unable to reach a fast-growing yet photosynthetically active part of the plant. Since Calcium transport can be increased by increasing transpiration, we might think that decreasing the relative humidity (RH) might reduce BER but this in fact increases it, because transpiration increases faster in leaves, than it does in the fruit. In this case, solving the problem involves balancing Ca transport so that it reaches the fruit instead of the leaves. Pruning of excessive leaf tissue, lowering N to reduce vegetative growth, and increasing RH especially at night - can in fact help under these circumstances, where Ca deficiency develops in sink organs. Reducing ammonium as much as possible can also help, as ammonium can also antagonize calcium absorption due to its cationic nature.

In plants like cabbages and lettuce, a different picture

emerges. In this case, increasing the RH leads to worse tip burn symptoms, and decreasing it significantly reduces tip burn, as Ca transport is increased by the increased leaf transpiration. This can be a viable strategy if the temperature is not too high. Under high temperatures, reducing RH leads to too much water stress, which causes other problems for the plants. In these cases, a preferred technique to reduce tip burn is to increase air circulation, which decreases both the RH around leaf tissue and the temperature of the plant due to the wind-chilling effect, this can increase transpiration rates without overly stressing plants.

Figure 15.3 Potential mechanisms regulating Ca²⁺ deficiency disorders in fruit and vegetables.

Taken from this review.

Since in most cases these Ca issues are associated with fast growth, most measures that reduce growth will tend to reduce the severity of the Ca symptoms. Reducing the EC of solutions, reducing temperatures, and decreasing light intensity are some of the most popular mechanisms to reduce Ca problems by reducing plant productivity. These might be the most economical solutions – for example, if artificial lights are used — but it might not be favored by many growers due to the fact that it requires a sacrifice in potential yields. A potential way to attack Ca issues through growth control without reducing yields is to use growth regulators in order to suppress vegetative growth. <u>Synthetic</u> and <u>natural</u> <u>gibberellin inhibitors</u> are both effective at this task.

A common strategy to tackle these Ca issues is to perform foliar sprays to correct the deficiency. Weekly, calcium nitrate or calcium chloride foliar sprays can help alleviate symptoms of tip burn and black heart. Spraying plants from a young age, to ensure they always have Ca in their growing tips, is key. When performing these sprays, primordially make sure all growing tips are fully covered, as Ca sprayed on old tissue won't really help the plant, as Ca cannot be transported from old to young leaves.

Using calcium sulfate in hydroponics

Calcium is a very important element in plant nutrition and can be supplied to plants through a wide variety of different salts. However, only a handful of these resources are significantly water soluble, usually narrowing the choice of calcium to either calcium nitrate, calcium chloride or more elaborate sources, such as calcium EDTA. Today I am going to talk about a less commonly used resource in hydroponics – calcium sulfate – which can fill a very important gap in calcium supplementation in hydroponic crops, particularly when Ca nutrition wants to be addressed as independently as possible and the addition of substances that interact heavily with plants wants to be avoided.

Calcium sulfate dihydrate (gypsum)

There are some important reasons why you don't hear too much about calcium sulfate in hydroponics. Some websites actually recommend heavily against using this substance in hydroponic nutrient solutions. Why is this the case? The core issue is calcium sulfate's solubility, with this substance traditionally considered "insoluble" in chemistry. However all substances are soluble to one or another degree – even if to an extremely small degree – but calcium sulfate is actually at the very border of what is considered a soluble substance in regular aqueous chemistry.

At 20C (68F), calcium sulfate dihydrate — the form most commonly available — has a solubility of around 2.4 g/L. In practice this means that you can have up to around 550 ppm of Ca in solution from calcium sulfate dihydrate before you observe any precipitation happening. This is way more than the normal 150-250 ppm of Ca that are used in final hydroponic nutrient solutions that are fed to plants. You could supply the entire plant requirement for calcium using calcium sulfate without ever observing any precipitate in solution. At the normal temperature range that hydroponic nutrient solutions are kept, the solubility of calcium sulfate is just not an issue. To add 10 ppm of Ca from calcium sulfate you need to add around 0.043g/L (0.163g/gal). You should however avoid using calcium sulfate for the preparation of solutions for foliar sprays as it will tend to form precipitates when the foliar spray dries on leaves, the leaves will then be covered with a thin film of gypsum, which is counterproductive.

Calcium sulfate has a great advantage over other ways to supplement calcium in that the anion in the salt – sulfate – does not contribute as significantly to plant nutrition. Other sources, such as calcium chloride or calcium nitrate, will add counter ions that will heavily interact with the plant in other ways, which might sometimes be an undesirable effect if all we want to address is the concentration of calcium ions. Other sources such as Ca EDTA might even add other cations – such as sodium – which we would generally want to avoid. Calcium sulfate will also have a negligible effect in the pH of the solution, unlike other substances – like calcium carbonate – which will have a significant effect in the pH of the solution.

Solubility (g per 100mL) of calcium sulfate as a function of temperature for different crystalline forms (see more <u>here</u>)

A key consideration with calcium sulfate is also that its dissolution kinetics are slow. It takes a significant amount of time for a given amount of calcium sulfate to dissolve in water, even if the thermodynamics favor the dissolution of the salt at the temperature your water is at. For this reason it is very important to only use calcium sulfate sources that are extremely fine and are graded for irrigation. This is sometimes known as <u>"solution grade" gypsum</u>. I advice you get a small amount of the gypsum source you want to use and test how long it takes to dissolve 0.05g in one liter of water. This will give you an idea of how long you will need to wait to dissolve the calcium sulfate at the intended temperature. Constant agitation helps with this process.

An important caveat with calcium sulfate is that its relatively low solubility compared with other fertilizers means that it cannot be used to prepare concentrated nutrient solutions. This means that you will not be able to prepare a calcium sulfate stock solution or use calcium sulfate in the preparation of A and B solutions. As a matter of fact the formation of calcium sulfate is one of the main reasons why concentrated nutrient solutions usually come in two or more parts, to keep calcium and sulfate ions apart while they are in concentrated form. *Calcium sulfate should only be added to the final nutrient solution and adequate considerations about temperature and dissolution time need to be taken into account*.

Calcium EDTA and its problems in hydroponics

Calcium is mainly used in hydroponics as calcium nitrate, given that this is a very soluble and abundant form of calcium. However this is not the only way calcium can be fed to plants and a myriad of other calcium sources exist. Among this we find calcium sulfate, calcium chloride, calcium hydrogen phosphate, calcium citrate, calcium gluconate and calcium EDTA. This last form, a chelate of calcium with EDTA, is one of the most cheaply available forms of chelated calcium but carries with it some substantial problems in hydroponic culture. In this article we are going to talk about Ca EDTA, its advantages and challenges when used as a supplement for calcium in hydroponics.

Model representation of the CaEDTA⁻² anion in the Ca EDTA salt. When talking about Ca EDTA we should first understand that this is not simply a calcium ion with an EDTA molecule wrapped around it. In reality, the product we purchase as Ca EDTA, that contains 9.7% Ca by weight, is actually represented chemically as $C_{10}H_{12}O_8CaN_2Na_2\cdot 2H_2O$. The Ca EDTA product is actually four parts, a few waters of crystallization, the Ca⁺² cation, the chelating agent anion that wraps around it (EDTA⁻⁴) and two sodium cations, Na⁺, that are used to counter the two excess negative charges coming from the Ca EDTA (which we should more accurately call (CaEDTA)⁻²). When adding Ca EDTA we are actually adding four things, a little water, Ca, EDTA and Na. Most importantly Ca EDTA is in reality 12.15% sodium, meaning you're adding more Na than you're adding Ca when you use it.

Because of the above, thinking about Ca EDTA as any significant portion of a plants Ca nutrition is going to be a problem. Adding 100 ppm of Ca through this chemical would imply adding more than 100 ppm of Na. This addition of sodium can start to be heavily detrimental to plants as higher and higher values are reached (read my article on <u>sodium in hydroponics</u> to learn more). Although there is not much in the way of scientific literature using Ca EDTA, we do find <u>some reports</u> talking about heavy toxic effects at concentrations near 2.5 mM (940.7 ppm), which would contribute around 90 ppm of Ca to a solution.

Another important aspect to consider is the EDTA molecule itself. The EDTA chelate is not passive by any means and is not covalently attached to the Ca, so can easily move away. Since it binds pretty weakly with Ca, it will want to exchange Ca with anything else that seems more attractive to it. This poses an important problem when applying it in solution, as the EDTA in Ca EDTA might dissociate from Ca and attach to another ion that it finds more attractive, it prefers heavy metals so this can actually cause extraction of things like lead from the media. This might be an important consideration when used in cases where the media might contain significant amounts of heavy metals.

Yet another interesting issue — that I haven't seen mentioned anywhere else and only know experimentally — is that the actual CaEDTA⁻² anion can form insoluble salts with Ca itself. This means that you can actually precipitate Ca(CaEDTA) in solutions that are highly concentrated in both ions. This is an important reason why concentrated solutions of Ca EDTA and Ca nitrate are very hard to prepare right, because as soon as you pass the solubility limit of Ca(CaEDTA) you will start to see it crystallize out of solution. Many people wonder why something is precipitating out of a solution made of two very soluble Ca salts, the reason is that Ca EDTA is not a neutral entity but can actually form a salt with free Ca. The Ca EDTA definitely requires its own concentrated solution most of the time.

So why would anyone use CaEDTA given the above set of very important problems? There are a some advantages to it that make it a good salt for some applications, particularly foliar sprays. The first is that it is not going to precipitate easily out of solutions because of anions, so it can remain at a high concentration with anions that would normally precipitate as Ca salts in the presence of free Ca. This can be interesting in the case of some anions, like salicylates, that are often used as plant growth promoters (you can see this specific use <u>in this paper</u>). It is also one of the only forms of Ca that is taken in by the plant as an anion, so it is Ca that can get into the plant without having to compete with other cations in their transport channels. There are therefore some cases where Ca can be used very successfully in foliar applications (<u>1</u>).

Although there might be some niche applications for CaEDTA, particularly allowing some experiments that would be impossible with regular Ca salts, there are also some very important issues with its use in hydroponic culture. If you're contemplating using it, I would suggest you carefully consider its chemistry in solution and interactions with other substances that will be with it, particularly in stock solutions. You should also consider the amount of sodium being added and preferably avoid using it in feeding solution applications unless you have carefully considered all of the above and its advantages are more important for your particular use case.