Why most of the time a “deficiency” in hydroponics is not solved by just “adding more of it”

I am routinely approached by hydroponic growers who believe that a “deficiency” in their hydroponic crop needs to be fixed by adding something to their nutrient solution. The logic is simple, a plant is showing some set of symptoms that are often associated with a lack of that element in tissue. The response, seems to be evident – add more of whatever is supposed to be missing to the nutrient solution – the results, often mixed whenever this is done. Why is it that a plant showing symptoms meaning it “lacks” something, is often not fixed by just adding more of that to the nutrient solution? The answer, which we will be discussing within this post, can be complicated and shows why diagnosing and solving problems in hydroponics is not as straightforward as matching a plant’s symptoms to a nutrient deficiency chart.

Let’s start by asking what it means to have a deficiency in leaf tissue. This means that the plant, for whatever reason, has been unable to meet its needs of some given element within its leaves. There are several reasons why this can happen. Is it completely absent, is there not enough or is it there but not able to get to the leaves because of some other reason? How do we even find out which one of these cases is the answer? For this you need to look into what is usually expected for the concentration of an element in a nutrient solution – the so called sufficiency ranges – and then evaluate whether that element is in an adequate concentration in the nutrient solution (which means getting a chemical analysis of the nutrient solution, never trust what you think is “supposed to be there”).

A potassium deficient leaf in tomato, this can often be caused by antagonistic relationships with other nutrients, exacerbated by environmental conditions

More importantly we now need to consider the ratios of that element with everything else, because plants sense both the absolute and relative concentration of the elements as the concentration of an element affects the kinetics of both its absorption and the absorption of others. For example you might have a concentration of Mg that is 50 ppm, which would be within the sufficiency range of this element and seemingly not a problem to contend with. However, if this is paired up against Ca at 200 ppm and K at 400 ppm, then that amount of Mg might be insufficient given that it’s being paired against very strong competition from the other elements. In this particular case, adding more Mg might not solve the problem, because it might increase the strength of the solution to a point where the plant is stressed too much. The correct solution in this case could be to lower Ca and K to 150 and 300, so that the Mg:K and Ca:Mg are at a more acceptable level.

You can see that the cure to a deficiency is solving the transport problem, which is not necessarily solved by increasing concentration. This is also not exclusively possible with nutrient ratios, the environment can also play a key role in determining whether transport is possible or not. Another example is a deficiency of K, despite there being 350+ ppm of K in the nutrient solution and all the ratios of the other elements with K being normal (Ca at 150 ppm, Mg at 60 ppm). In this case the problem can come from a very high temperature with low humidity, which increases the vapor pressure deficit so much that Ca transport is inevitably favored over K. This means that the plant goes K deficient, despite there being enough K, because the transport of another element is just able to out compete it due to the environmental circumstances. The solution is not to increase K, nor is it to decrease Ca. The solution in this case is to bring the VPD to an adequate level, so that the absorption of those nutrients can be normalized.

Other environmental factors can also play a key role in determining transport. For example, low nutrient solution temperature often causes a deficiency of P in plants, not because there is not enough P in the nutrient solution, because the ratios are wrong, or because the VPD is wrong, but mainly because P absorption at the root level is hindered by the low temperature. The correct solution here is not to add more P – that often makes it even worse – but actually heating up the nutrient solution to make absorption easier or – if that’s not possible – it can often be helped with the establishment of beneficial fungi to help with the transport of this nutrient.

As you can see, the failure of some nutrient to show up in leaf tissue is not so commonly due to its absence in the nutrient solution but more commonly related with some other factor that is wrong. Excess of other nutrients, which causes skewed ratios, bad environmental configurations – too low/high VPD values – problems with solution temperature or solution pH are some of the most common ways in which nutrient deficiencies can affect plants without the element in question being absent in any significant way. The ultimate goal is to determine why the transport of an element is not working and, in doing so, eliminate the block so that the plant can again process its nutrients successfully.




Getting all the data to evaluate a problem in a hydroponic crop

Problems are an inevitable part of being a hydroponics grower. Even experienced growers will sometimes face issues when moving between environments or plant species as things change and new challenges arise. A big part of being a good grower is to be able to think about these obstacles, find out their causes and successfully respond to them. In this post I want to share with you some information about the data you should gather in order to properly diagnose a problem in your hydroponic crop. This is important as not having enough data often makes it impossible to figure out what’s going on, while simple measurements can often give a very clear view of what’s happening with the plants.

Take detailed, well documented pictures. What you see is a very important portion of what describes a plant’s status and issues. The first thing you should do is document what you’re seeing – take pictures of the plants showing the problem – and write down the symptoms you are observing. This documentation process should be organized, give each plant an ID, take pictures under natural light or white light of the new leaves, old leaves and root zones (if possible). Take pictures across different days showing the evolution of symptoms. Have all this information so that you can then better interpret what is going on. Also remember that symptoms do not necessarily mean deficiencies and deficiency symptoms does not necessarily mean more of a nutrient needs to be added to a nutrient solution (for example a P deficiency can show under low nutrient solution temperature even if P in the solution is actually very high).

Taking detailed pictures can help assess whether a nutrient deficiency is present by gauging the changes in a plant as a function of time. However these should be confirmed with leaf tissue analysis as some of these symptoms can have causes not related with a nutrient deficiency.

Record all environmental data. When a problem happens, it is often related to the environment the plants are in. Having recorded data about the environment is a very important part of evaluating the issue and figuring out what went wrong here. Getting a good view about the environment usually involves having measurements for room temperature, temperature at canopy, relative humidity, carbon dioxide concentration, nutrient solution temperature, PPFD at canopy, and root zone temperature. All of this data should be recorded several times per day as they are bound to change substantially between the light and dark periods.

Get nutrient solution analysis. Diagnosing a problem is all about having a complete view of what’s going on with the plants. The nutrient solution chemistry can often be a problem, even without the grower knowing a problem is brewing there. Sometimes nutrient solution manufacturers might have batches with larger errors than usual, or the input water might have been contaminated with something. There is also the potential of human error in the preparation of the solutions, which means that getting an actual check of the chemistry of the solution can be invaluable in determining what’s going on.

Get leaf tissue analysis. Even if the nutrient solution analysis does not reveal any problems, there are often issues with plants that are related with interactions between the environment and the solution that can go unnoticed in a chemical analysis of the solution itself. Doing a leaf tissue analysis will show whether there are any important nutrient uptake issues within the plant, which will provide a lot of information about where the problem actually is.

Leaf tissue analysis for berry crops- Now is the time – Wisconsin Fruit
Expected nutrient ranges for leaf composition of different species. Leaf tissue can often help tell whether there are some important abnormalities in progress and may help the grower assess which causes to look at.

Take well documented pictures of tissue samples using a microscope. A microscope can be important in determining what’s going on with plants, because it can show developments in roots/tissue that cannot be seen with the naked eye. Microscopes can often reveal very small insects or fungal structures that would have otherwise gone unnoticed. For this reason, a microscope and the taking of microscopy images can be of high value when dealing with a problem in a hydroponic crop.

With all the data mentioned above, most hydroponic crop problems will be much easier to diagnose. Some of the biggest failures in dealing with problems in hydroponic crops come from not gathering enough data and just guessing what the problem might be given how the plants look. Sadly plants can show similar responses to a wide variety of problems and – in the end – nothing replaces having the data to actually diagnose what’s going on in order to deal with the issue appropriately. Lacking an evidence-based picture is often the biggest difference between success in diagnosing/fixing an issue and failure or even worse problems caused by taking actions that have nothing to do with the real problem at hand.