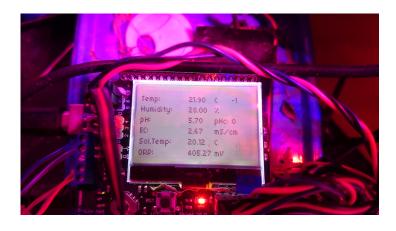

Automating a hydroponic system: Sensors and monitoring

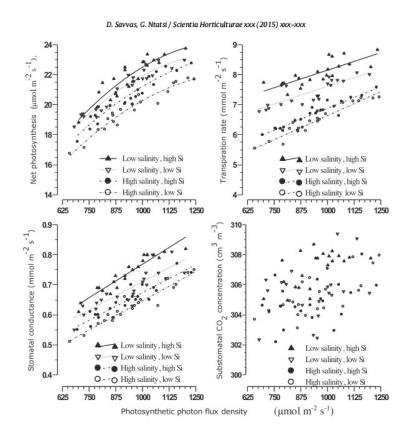

Hydroponic systems benefit greatly from gathering more information as this gives the grower the ability to better diagnose problems and better understand the evolution of their hydroponic crops. Usually growers limit the information they gather to single sensor measurements carried out either at different points during the day or even only when nutrient solutions need to be changed. These measurements are often not recorded and are difficult to analyse in a wider context. Today I am going to talk about the automation of sensors in a hydroponic crop and the benefits this can yield you in the longer term. I will give you some advice regarding how to do this and will in a later post provide some practical steps to achieve an automatically monitored setup. Below you can see a picture of the output of my home hydroponic setup monitoring pH, EC, ORP, humidity, ambient and solution temperatures.

Automating sensors is not only having sensors that can take readings at predefined intervals but also making sure that the reading from these sensors are stored so that they can be used for analysis and diagnosis later on. Thankfully these days we have Arduino micro-controllers which are compatible with a wide variety of sensors that can be used for automated monitoring. We also have very cheap raspberry pi computers which we can use to store this information and build a database with our sensor information. Ideally we would like to monitor as many variables as possible but we are somewhat limited both by cost and the sensor capabilities of the Arduino micro-controllers. If you want to perform automated monitoring then you would definitely want to buy pH, EC, ambient temperature, solution temperature, humidity and carbon dioxide sensors. If you have more money or want to have more data then I would also advice getting a dissolved oxygen sensor and an ORP sensor. If you have a large grow room then you might want to place several CO2 and temperature sensors to properly monitor the entire crop. Here is a small shopping list with sensors and microcontrollers you could use for this:

- Temperature and humidity sensor 5.20 USD
- Arduino UNO 23.90 USD
- Raspberry Pi 39.95 USD
- ORP sensor 89.05 USD
- pH sensor 56.95
- EC sensor 69.90 USD
- Arduino LCD shield 24.95 USD
- Dissolved Oxygen 257.45 USD
- Real-time clock module 13.55 USD
- CO2 sensor 56 USD

Although the LCD shield isn't really necessary for the setup it does allow you to write an Arduino program that displays readings right away. This is very useful as you can see readings as they happen within your hydroponic crop. The image below shows you how this looks like within my home hydroponic setup. In this setup I have all the sensors constantly taking measurements from the crop, which are displayed in this LCD screen. There is also a raspberry pi connected to this Arduino that records one measurement every 2 minutes. I don't record measurements any faster since this would cause the memory usage to grow very fast within the Raspberry pi without any important gains in the amount of knowledge gained from the information taken.

_


It is also important to know that the sensors should be industrial quality sensors designed to be kept submerged all the time. For example the above ORP, dissolved oxygen and EC meters are not designed for being constantly submerged so after a while they will stop working and you will need to change them. However if you clean the sensors around once a week and cover the body of the sensor — especially where the cable goes out the back - with electrical tape you can significantly extend their service life. After they run out you can still use the interface to connect an industrial grade sensor. It is worth noting that all sensors can lose their calibration so you want to calibrate your pH/EC sensors at least once every month within this setup. Also when taking sensor measurements you will want to take the median of a large number of measurements (>100) in order to ensure better stability.

Within a followup post I will share the code I use for my automated home setup as well as some additional information dealing with the automatic use of peristaltic pumps to automatically adjust pH/EC and ORP. For a few hundred dollars automated monitoring can greatly increase your ability to understand your hydroponic crops.

Is ortho-silicic acid worth the additional expense in hydroponics?

Silicon is all the rage right now and different silicon product manufacturers are racing to produce commercial products that contain more and more biologically active silicon. The idea is mainly that potassium silicate — the most commonly used form of silicon in hydroponics — has some problems maintaining high bioavailability at the pH levels used in hydroponics and therefore more stable silicon sources are needed to meet plant needs. However we need to ask ourselves if this is actually true and whether it is actually worth it to go to much more expensive Si sources when supplementing plants with silicon products. Today I want to talk about the Si research up until now and what it tells us about silicon and stabilized silicon products.

_

Without a doubt there are some proven benefits to using silicon supplementation. As explained within this recent literature review from 2015 about silicon's role in plants the benefits from silicon application include increased photosynthesis, resistance to abiotic stress as well as increased resistance to several fungal pathogens. It is also

clear that foliar application of Silicon does not lead to large increases in tissue concentration and root applications tend to yield the biggest benefits. The above image shows some of the benefits of high (1mM) and low Si (0.1mM) treatments under different conditions for hydroponically grown Zucchini plants. The review also mentions the exploration of stabilized silicon forms and the current lack of scientific evidence regarding their efficacy when compared with traditional non-stabilized forms of silicon.

_

So if silicon from potassium silicate can show benefits why may we need a better form of silicon? The problem with silicates is that under low pH values the silicate ion gets protonated and converted into silicic acid but silicic acid is unstable and will tend to polymerize and form molecules with limited bioavailability under these conditions. If we use a form of silicon that does not suffer from this problem then we might be able to get some additional benefits. There are indeed a few studies in lettuce and tomatoes showing that choline stabilize orthosilicic acid (ch-OSA) can indeed improve plant responses under Mn stress and even a study about the use of ch-OSA improving seedling growth but these results lack controls against potassium silicate so we don't know if the response would simply be equal than that of a traditional silicate application. Below you can see a graphical representation of a choline molecule's structure, choline is basically a beta aminoacid that is able to stabilize silicic acid by binding to its oxygen atoms through the positive trimethyl amine group, inhibiting polymerization.

_

Choline

_

We know however that not all forms of stabilized silicon sources would work well. For example there is a <u>study</u> involving alkyl silicic acids (another form to stabilize silicon) that shows that the application of these compounds produces even worse results than controls with no silicon supplementation. Plants do not seem to deal well with this type of stabilized compounds, where the silicon is stabilized by the introduction of simple alkyl groups. Some of these forms of silicon — dimethyl silicic acid — were even highly toxic to plants at low concentrations.

_

Up until this point there is basically no scientific evidence that shows how stabilized silicon sources like ch-OSA may provide a benefit over using a simpler and cheaper source of silicon like potassium silicate in higher plants. If potassium silicate is dissolved at the appropriate concentration and in an adequate manner then there is no doubt that it can provide significant benefits at a fraction of the cost. Companies producing ch-OSA and similar silicon stabilized sources generally say that they contain "more bioavailable silicon" and while it may be true that they may allow for the larger abundance of some silicon species in solution, what they should show is an increase in benefits when compared with a potassium silicate control since this is in the end what

interests most hydroponic growers. While this evidence is lacking it is certainly not worth it to pay the extra cost, given that benefits using potassium silicate have been proven while benefits using ch-OSA haven't been proven to be greater than those obtained with these cheaper Si sources.