# Growing Soilless Crops Without Nitrates: Practical Options When Nitrate Salts Are Unavailable

For growers in regions where geopolitical conflicts or economic constraints limit access to nitrate fertilizers like calcium nitrate and potassium nitrate, the question arises: can you grow hydroponic or soilless crops using only alternative nitrogen sources? The short answer is yes, but with important limitations and necessary substrate modifications. This post explores the science behind nitrate-free soilless growing and practical strategies for growers facing nitrate scarcity.



**Figure 1.** Effects of nitrate concentration (25, 50, 75, 100 and 150% of the recommended dose) and proportion of nitrate/ammonium (0:100, 25:75, 50:50, 75:25 and 100/0) in the nutrient solution for hydroponics, on the development of lettuce Iceberg type.

The above image is sourced from (8).

### Why Nitrates Dominate in Hydroponics

In conventional hydroponics, 85-95% of nitrogen is supplied as nitrate (NO3-) rather than ammonium (NH4+). This preference exists for good reasons. Plants can safely store nitrate in vacuoles without toxicity, while ammonium accumulation in plant tissues causes rapid damage (1). In soil, nitrifying bacteria convert ammonium to nitrate before plant uptake, but most soilless substrates lack these microbial communities. Without this conversion, ammonium concentrations that would be harmless in soil become highly toxic in hydroponics.

Research on tomatoes shows that plants supplied with 112 ppm nitrogen as ammonium developed severe toxicity symptoms and produced only one-third the biomass of nitrate-fed plants (1). Even at 14 ppm nitrogen, ammonium-only nutrition suppressed growth compared to mixed nitrogen sources. For lettuce, similar effects occur, with crown discoloration and biomass reductions appearing at 50 ppm ammonium nitrogen (2).

### Maximum Safe Ammonium Levels

The tolerance threshold varies by species and conditions, but general guidelines exist:

| Crop Type                                       | Maximum Safe<br>Ammonium (% of<br>total N) | Maximum<br>Concentration (ppm<br>N) |
|-------------------------------------------------|--------------------------------------------|-------------------------------------|
| Most crops (standard)                           | 10-15%                                     | 15-30 ppm                           |
| Sensitive crops<br>(tomato, pepper,<br>lettuce) | 5-10%                                      | 10-20 ppm                           |
| Cold conditions (<15°C)                         | 0 - 5%                                     | 0-10 ppm                            |
| High light, fast growth                         | 15-20%                                     | 20-40 ppm                           |

These limits exist because ammonium uptake is passive and rapid, plants cannot regulate it effectively, and it disrupts calcium and magnesium uptake while acidifying the root zone (3).

### Substrate Amendments: Creating Artificial Soil

The key to using higher ammonium levels or organic nitrogen sources is establishing nitrifying bacteria in the substrate. Recent research demonstrates that soilless substrates can be inoculated with microbial communities that convert organic nitrogen to nitrate (4).

Effective substrates for nitrification include rockwool, vermiculite, polyurethane foam, oyster shell lime, and rice husk charcoal. The process requires:

- 1. **Inoculum source**: Bark compost or mature vermicompost provides ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Add 1g per 100mL substrate initially.
- 2. **Temperature**: Nitrifying bacteria function optimally at 25-42°C. Below 15°C, nitrification slows dramatically, causing ammonium accumulation <u>(5)</u>.
- 3. **Humidity and aeration**: Substrates need >50% relative humidity and adequate oxygen. Waterlogged conditions inhibit nitrification and promote denitrification.
- 4. **Establishment period**: Allow 2-3 weeks for bacterial colonization before planting. Daily additions of dilute organic fertilizer (6 mg N per 100mL substrate) accelerate establishment.

### **Practical Nitrogen Sources**

#### **Ammonium Salts**

Ammonium sulfate ((NH4)2SO4) is the most accessible ammonium source globally. At 21% nitrogen, it provides both N and sulfur. However, use caution:

- Never exceed 20% of total nitrogen as ammonium in solution
- Monitor substrate pH closely, as ammonium uptake releases protons and acidifies the root zone
- Increase ratios only under high light and warm temperatures (>20°C)
- Sensitive crops like lettuce, tomato, and pepper tolerate lower ratios

Ammonium phosphate (MAP or DAP) offers nitrogen plus phosphorus but requires even more careful management due to rapid pH shifts.

#### Urea

Urea (CO(NH2)2) at 46% nitrogen is economical and widely available. In water, urease enzymes (either from bacteria or added exogenously) hydrolyze urea to ammonium. However, hydroponic studies on various crops show that urea performs poorly as a sole nitrogen source (6). Plants fed only urea exhibited nitrogen deficiency symptoms at low concentrations and toxicity at high concentrations. The primary issues are:

- Insufficient uptake of intact urea by most crop species
- Variable conversion rates without soil bacteria
- pH instability during hydrolysis

Combined applications of urea with nitrate showed better

results than urea alone, but if nitrates are unavailable, urea offers limited benefit beyond what ammonium salts provide (6).

#### Compost and Organic Extracts

Compost leachates and vermicompost teas contain nitrogen primarily as proteins, amino acids, and ammonium. Direct use in inert hydroponics fails because plants cannot efficiently absorb complex organic nitrogen. However, two approaches work:

Aerobic nitrification method: Add organic nitrogen sources like corn steep liquor (1g/L) or fish emulsion plus bark compost (0.5g/L) as bacterial inoculum. Aerate for 12 days, during which bacteria convert organic N and ammonium to nitrate, reaching 100-130 ppm N as nitrate (7). This creates a low-cost, nitrate-containing solution from readily available materials.

**Substrate-based mineralization**: Inoculate substrates with compost microbes and apply dilute organic fertilizers daily. The substrate acts as a biofilter, mineralizing organic N to nitrate before plant uptake (4). This method requires 2-3 weeks establishment and careful moisture management.

### **Expected Yield Impacts**

When managed properly with substrate amendments and bacterial communities, yields can approach conventional hydroponic levels. Studies show that tomatoes grown with nitrified organic solutions performed comparably to mineral fertilizer controls when adequate nitrate was generated (7).

However, several factors reduce yields in poorly managed nitrate-free systems:

 Ammonium toxicity: High ammonium causes 30-70% yield reductions across most crops (1)

- **Nutrient imbalances**: Ammonium competes with Ca<sup>2+</sup> and Mg<sup>2+</sup> uptake, inducing deficiencies
- pH instability: Root zone acidification from ammonium uptake reduces nutrient availability
- Incomplete mineralization: Organic N sources may not fully convert to plant-available forms

Realistic expectations for growers transitioning to nitratefree systems:

- First crop cycle: 50-70% of conventional yields while optimizing conditions
- Established systems with functioning bacterial communities: 80-95% of conventional yields
- Cold season growing (<15°C): 40-60% due to impaired nitrification

### **Nutrient Solution Modifications**

Without calcium nitrate, calcium must come from chloride or sulfate sources rather than nitrate. Calcium chloride is highly soluble but adds chloride. Gypsum (calcium sulfate) doesn't have the solubility needed to make concentrated stock solutions and therefore can only be added to the final solutions or added to the media as an amendment. Calcium chloride can add unwanted high amounts of chlorides as it's therefore best avoided. If you are doing composting amendments then limestone amendments might be the most desirable way to supply Ca to the crop.

#### Critical Success Factors

To successfully grow soilless crops without nitrate fertilizers:

- 1. **Establish nitrifying bacteria**: This is non-negotiable for using organic N or high ammonium levels
- 2. **Monitor pH constantly**: Ammonium acidifies solutions; maintain pH 5.8-6.5 through buffering or base addition
- 3. **Provide adequate calcium**: Use calcium chloride or sulfate since calcium nitrate is unavailable
- 4. **Keep temperatures warm**: >20°C substrate temperature for bacterial activity
- 5. **Start conservatively**: Begin with 10% ammonium and increase gradually as plants adapt
- 6. Choose tolerant species first: Leafy greens like pak choi are more tolerant than tomatoes or peppers

### Conclusion

Growing soilless crops without nitrates is achievable but requires different management than conventional hydroponics. The approach depends on creating conditions that mimic soil processes, establishing microbial communities to convert ammonium and organic nitrogen to nitrate within the substrate. While yields may initially be lower, proper substrate inoculation, temperature management, and careful nitrogen source selection can produce acceptable results. For growers with limited access to nitrate salts, combining small amounts of ammonium sulfate (20-30 ppm N) with aerobically nitrified compost teas or inoculated substrates offers the most practical path forward.

### **Comparing Nutrient Solutions**

## for Hydroponic Strawberry Production

Getting the right nutrient solution for strawberries in hydroponics can feel like trying to solve a puzzle where every piece matters. Unlike many crops where you can get away with a generic formula, strawberries are particularly responsive to nutrient composition, especially when it comes to the balance between nitrogen and potassium. Today, we will explore how different nutrient formulations affect both yield and fruit quality in soilless strawberry production.



A hydroponic strawberry production greenhouse

### The Modified Steiner Approach

When researchers at the Technological Institute of Torreón tested different nitrogen and potassium combinations in strawberries, they discovered something important about how these two nutrients interact. Using a (1) modified version of Steiner's Universal Nutrient Solution, they evaluated twelve

different formulations with nitrogen ranging from 126 to 210 ppm and potassium from 195 to 430 ppm.

The results were revealing. Plants receiving 168 ppm nitrogen combined with 430 ppm potassium achieved yields of 114 grams per plant, which was significantly higher than lower nitrogen treatments. However, here is where it gets interesting: while high nitrogen boosted yield, it actually decreased fruit quality. The highest soluble solids content (10.5 degrees Brix) occurred at the lowest nitrogen level of 126 ppm. This creates a real dilemma for growers who want both high yields and premium quality fruit.

| Solution<br>Type                     | N<br>(ppm) | P<br>(ppm) | K<br>(ppm) | Ca<br>(ppm) | Mg<br>(ppm) | Yield           | Quality<br>Impact           |
|--------------------------------------|------------|------------|------------|-------------|-------------|-----------------|-----------------------------|
| Modified<br>Steiner<br>(Low N)       | 126        | 46         | 195        | 449         | 121         | 89.3<br>g/plant | Highest<br>Brix<br>(10.5°)  |
| Modified<br>Steiner<br>(Medium<br>N) | 168        | 32         | 273        | 360         | 97          | 108<br>g/plant  | Moderate<br>Brix<br>(10.0°) |
| Modified<br>Steiner<br>(High N)      | 210        | 19         | 194        | 413         | 111         | 111<br>g/plant  | Lowest<br>Brix<br>(9.5°)    |

### The Critical Role of Potassium

What emerged from this study was potassium's profound impact on fruit quality. When potassium was increased to 430 ppm, the soluble solids climbed to 10.6 degrees Brix, and phenolic compounds reached their peak as well. The (1) research showed that the optimal combination for maximizing both yield and nutraceutical quality was 168 ppm nitrogen with 430 ppm potassium, resulting in antioxidant capacity of 6305 microequivalents of Trolox per 100 grams.

This makes physiological sense. Potassium plays a fundamental role in sugar transport through the phloem, and when potassium availability is adequate, more sugars accumulate in the fruit. Meanwhile, excessive nitrogen tends to promote vegetative growth and the synthesis of nitrogen containing compounds like proteins and amino acids, rather than the accumulation of secondary metabolites that contribute to fruit quality.

### Optimizing NPK Ratios for Chinese Greenhouses

A comprehensive study from China Agricultural University took a different approach by examining the combined effects of nitrogen, phosphorus, potassium, and water on strawberry production. Using a (2) quadratic regression design with 36 treatments, researchers determined that nitrogen was by far the most important factor, followed by water, then phosphorus, with potassium having the least impact on the sweetness to acidity ratio.

Their optimal formulation for achieving yields above 110 grams per plant with excellent fruit quality included nitrogen at 156 to 172 ppm (supplied as calcium nitrate), phosphorus at 54 to 63 ppm (as sodium dihydrogen phosphate), and potassium at 484 to 543 ppm (from potassium sulfate). This represents significantly higher potassium levels than the Steiner based formulations, suggesting that when other nutrients are optimally balanced, strawberries can benefit from even more potassium.

| Nutrient     | Optimal<br>Range<br>(ppm) | Impact on Yield                  | Impact on Quality (SSC/TA) |
|--------------|---------------------------|----------------------------------|----------------------------|
| Nitrogen (N) | 156 to 172                | Most significant positive effect | Most significant factor    |

| Phosphorus<br>(P) | 54 to 63                   | Moderate positive effect    | Second most important |
|-------------------|----------------------------|-----------------------------|-----------------------|
| Potassium (K)     | 484 to 543                 | Significant positive effect | Minimal impact        |
| Water             | 12.0 to<br>13.1<br>L/plant | Second most<br>important    | Third most important  |

### The Calcium and Electrical Conductivity Question

While much attention focuses on NPK ratios, calcium concentration matters enormously in strawberry production. In the modified Steiner solutions, calcium ranged from (1) 244 to 449 ppm depending on the treatment. Higher calcium levels corresponded with lower nitrogen and potassium concentrations, maintaining appropriate osmotic potential.

Research has shown that the electrical conductivity (EC) of the nutrient solution significantly impacts strawberry performance in soilless culture. Studies using different EC levels found that (3) 1.3 mS/cm was optimal for spring production, while 2.2 mS/cm proved better during winter months. This seasonal adjustment reflects the plant's changing water use and nutrient demand patterns throughout the growing cycle.

#### Micronutrient Considerations

While macronutrients get most of the attention, micronutrient composition matters too. The (1) modified Steiner formulations included iron at 5 ppm, manganese at 1.6 ppm, boron at 0.865 ppm, zinc at 0.023 ppm, copper at 0.11 ppm, and molybdenum at 0.048 ppm. These concentrations remained constant across all treatments, suggesting that within reasonable limits,

macronutrient balance has a more pronounced effect on yield and quality than micronutrient variation.

### **Making Practical Choices**

So what should you actually do with this information? If you are growing strawberries hydroponically and want to maximize both yield and quality, consider starting with a solution containing approximately 160 to 170 ppm nitrogen, 55 to 60 ppm phosphorus, and 400 to 500 ppm potassium. Maintain the K:Ca ratio near 1-1.4:1 and the K:Mg ratio near 4:1. This matches some of my previous publications on the K:Ca ratio.

Remember that these recommendations assume you are maintaining appropriate pH (around 5.5 to 6.0) and EC levels suitable for your growing conditions. The (2) research demonstrated that excessive nutrients actually decreased both yield and quality, so more is definitely not better. You will need to adjust based on your specific cultivar, climate, and growing system, but these ranges provide a solid starting point backed by peer reviewed research.

The key takeaway is that strawberry nutrition in hydroponics requires a delicate balance. While nitrogen drives yield, potassium enhances quality, and the interaction between these two nutrients determines your ultimate success. Monitor your plants carefully, conduct tissue analysis when possible, and do not be afraid to adjust your formulation based on what the plants are telling you.

# Comparing Nutrient Solutions for Hydroponic Tomatoes

When growing tomatoes hydroponically, one of the most critical decisions you'll make is choosing the right nutrient solution. The composition of your nutrient solution can dramatically affect both the quantity and quality of your harvest. In this post, I'll examine different nutrient formulations that have been tested in scientific studies and discuss how they impact tomato production in soilless systems.



Picture of a soilless tomato greenhouse

### Understanding Nutrient Solution Basics

Before diving into specific formulations, it's important to understand that tomato plants have changing nutritional needs throughout their growth cycle. Research has shown that early in the season, excessive nitrogen can cause plants to become too vegetative, resulting in bullish growth that produces misshapen fruits and increases susceptibility to disease (1). High potassium levels can also create problems by interfering with calcium and magnesium absorption, leading to blossom end rot.

Most successful nutrient programs divide the growing season into distinct stages. The seedling stage requires lower concentrations of nutrients, particularly nitrogen, while mature fruiting plants need substantially higher levels of most nutrients to support both vegetative growth and fruit development (2).

### **Comparing Two Common Formulations**

Research has established several effective nutrient formulations for hydroponic tomatoes. I'll compare two well documented approaches that represent different philosophies in nutrient management.

| Nutrient          | Arizona<br>Formula<br>(Seedling) | Arizona<br>Formula<br>(Fruiting) | Florida<br>Formula<br>(Early) | Florida<br>Formula<br>(Late) |
|-------------------|----------------------------------|----------------------------------|-------------------------------|------------------------------|
| Nitrogen (N)      | 113 ppm                          | 144 ppm                          | 60 to 70 ppm                  | 150 to 200 ppm               |
| Phosphorus<br>(P) | 62 ppm                           | 62 ppm                           | 39 ppm                        | 39 ppm                       |
| Potassium<br>(K)  | 199 ppm                          | 199 ppm                          | 200 ppm                       | 300 to 400 ppm               |
| Calcium (Ca)      | 122 ppm                          | 165 ppm                          | 150 to<br>200 ppm             | 150 to 200 ppm               |
| Magnesium<br>(Mg) | 50 ppm                           | 50 ppm                           | 48 ppm                        | 48 ppm                       |

The Arizona formulation (2) maintains relatively consistent macronutrient levels between growth stages, with only modest increases in nitrogen and calcium as plants mature. In

contrast, the Florida approach <u>(1)</u> uses much lower nitrogen during early growth to prevent bullishness, then dramatically increases both nitrogen and potassium during fruit production.

### Micronutrient Requirements

While macronutrients often receive the most attention, micronutrients are equally essential for healthy tomato production. These elements remain fairly constant throughout the growing cycle (2). Standard micronutrient concentrations for hydroponically grown tomatoes include iron at 2.5 ppm, manganese at 0.62 ppm, boron at 0.44 ppm, zinc at 0.09 ppm, copper at 0.05 ppm, and molybdenum at 0.06 ppm.

| Micronutrient   | Concentration (ppm) |
|-----------------|---------------------|
| Iron (Fe)       | 2.5                 |
| Manganese (Mn)  | 0.62                |
| Boron (B)       | 0.44                |
| Zinc (Zn)       | 0.09                |
| Copper (Cu)     | 0.05                |
| Molybdenum (Mo) | 0.06                |

### The Impact of Nitrogen Supply on Quality

Research on nitrogen management has revealed some surprising findings. A study examining nitrogen supply at different growth stages found that increasing nitrogen from 140 to 225ppm during the vegetative stage increased protein, vitamin C, and sugar content in fruits (3). However, the effect on lycopene and beta-carotene depended heavily on the potassium supply during the reproductive stage.

Other research examining lower nitrogen levels has shown that minimal nitrogen supply can actually enhance lycopene content in tomato fruits, particularly when coupled with sufficient water supply (4). Studies in hydroponic culture have demonstrated that either the lowest or medium levels of nitrogen application produced the best lycopene content, suggesting that optimal nitrogen levels for antioxidant production may be lower than those for maximum yield.

### Potassium's Role in Fruit Quality

Potassium plays a fundamental role in determining tomato fruit quality. Research has demonstrated that increasing potassium supply during the reproductive stage significantly enhances sugar concentration, vitamin C content, protein levels, lycopene, and beta-carotene in tomato fruits (3). The effect is particularly pronounced when potassium levels increase from 200 to 500ppm.

Another comprehensive study found that high proportions of potassium in the nutrient solution increased quality attributes including fruit dry matter, total soluble solids content, and lycopene content (5). However, these same researchers found that high proportions of calcium improved tomato fruit yield and reduced the incidence of blossom end rot, highlighting the importance of balancing these two nutrients.

### **Electrical Conductivity Management**

One of the most innovative approaches to nutrient management involves carefully controlling the electrical conductivity (EC) of the nutrient solution. A study in closed NFT (Nutrient Film Technique) systems examined three different EC replacement set points: 5, 7.5, and 10 mS/cm (6). Remarkably, the highest EC replacement set point produced yields equivalent to lower EC treatments while significantly improving fruit quality.

The higher EC replacement threshold resulted in better dry matter content and total soluble solids in berries. Additionally, it demonstrated superior environmental sustainability by reducing total nutrients discharged into the environment by 37% compared to the medium EC treatment and 59% compared to the low EC treatment (6). This approach challenges conventional thinking about salinity stress in tomato production.

### Calcium Management and Blossom End Rot

Calcium nutrition presents one of the most common challenges in hydroponic tomato production. Blossom end rot, characterized by dark lesions on the blossom end of fruits, results from calcium deficiency in developing fruits. However, this deficiency often occurs even when calcium levels in the nutrient solution appear adequate (1).

The problem frequently stems from antagonism between nutrients. Excessive potassium in the nutrient solution can interfere with calcium uptake by plant roots. This is particularly problematic early in the season when using premixed fertilizers that contain high potassium levels. Growers working with water containing less than 50 ppm calcium need to be especially cautious about potassium concentrations.

To minimize blossom end rot, it's critical to maintain calcium levels between 150 and 200 ppm while keeping early season potassium levels moderate. Some growers supplement calcium nitrate with calcium chloride to increase calcium availability without adding more nitrogen. Each pound of calcium chloride (36% Ca) in 30 gallons of stock solution increases calcium concentration by approximately 14 ppm in the final nutrient solution when injected at a 1% rate (1).

### Effects on Yield and Quality Parameters

The differences between nutrient formulations can significantly impact both yield and fruit quality. Research consistently shows that inadequate nitrogen during fruiting stages produces lower yields, though the fruits may have better sugar content and flavor. Conversely, excessive nitrogen can produce abundant foliage at the expense of fruit production (4).

Potassium levels have a pronounced effect on fruit quality parameters. Adequate potassium improves fruit firmness, color development, and sugar content (3). However, excessive potassium can lead to calcium and magnesium deficiencies that compromise both yield and quality.

The timing of nutrient adjustments also matters significantly. Studies have shown that gradually increasing nutrient concentrations as plants transition from vegetative to reproductive growth produces better results than sudden changes in formulation. Plants that experience consistent, appropriate nutrition throughout their lifecycle typically show improved yields and more uniform fruit quality (6).

### **Practical Considerations**

When implementing a nutrient program, several practical factors deserve consideration. Water quality plays a fundamental role in determining how much of each nutrient to add. Wells in many regions naturally contain significant calcium and magnesium, sometimes providing 40 to 60 ppm calcium (1). These naturally occurring nutrients should be factored into your formulation calculations.

The pH of your nutrient solution also affects nutrient availability. Research has established that maintaining pH

between 5.5 and 6.0 ensures optimal nutrient uptake (2). Water with high alkalinity requires acidification, which can be accomplished using phosphoric acid or sulfuric acid depending on your phosphorus requirements.

The type of hydroponic system you're using may also influence your nutrient concentrations. Systems requiring fewer daily irrigation cycles may need higher nutrient concentrations to ensure plants receive adequate nutrition. The general principle is that nutrient concentrations should be higher in systems with less frequent fertigation compared to those with continuous or very frequent feeding (1).

### Advanced Management: The Transpiration-Biomass Ratio

One of the most sophisticated approaches to nutrient management involves calculating a recovery solution based on the transpiration-biomass ratio (6). This method recognizes that the relationship between water use and dry matter production changes throughout the growing cycle.

Research has shown that the transpiration-biomass ratio is high early in the crop cycle (approximately 300 liters per kilogram of dry weight), decreases during mid-season to a relatively stable phase, and then increases again late in the season (up to 400 liters per kilogram). This pattern suggests that nutrient concentrations should be adjusted accordingly: lower concentrations in the first and last phases, and higher concentrations during the middle phase when biomass accumulation is most rapid.

### Conclusion

Successful hydroponic tomato production requires careful attention to nutrient solution composition. While several proven formulations exist, the research clearly shows that no

single approach works best for all situations. The Florida formulation with its conservative early nitrogen levels may be ideal for preventing bullishness in greenhouse production, while higher EC strategies can improve fruit quality in closed systems.

Key takeaways from the scientific literature include: maintain nitrogen between 60 and 70 ppm early in the season to prevent excessive vegetative growth, increase potassium substantially during fruiting to enhance quality parameters, keep calcium between 150 and 200 ppm throughout the season while monitoring potassium levels to prevent antagonism, and consider that higher EC values (up to even 10 mS/cm) may be feasible limits for nutrient solution replacement in recirculating systems.

Starting with a well researched base formulation and making careful adjustments based on plant response, tissue analysis, and your specific growing conditions provides the most reliable path to optimizing both yield and quality in your hydroponic tomato crop. The scientific evidence demonstrates that nutrient management is not a one-size-fits-all proposition, but rather a dynamic process that should respond to both plant developmental stage and environmental conditions.

### pH vs Nutrient Availability: Rethinking the Classic Charts

If you've been around hydroponics long enough, you've probably seen the ubiquitous "pH vs nutrient availability" chart. It usually looks like a series of colored bars, each showing how available a nutrient supposedly is across a pH range. The bars

are wide for some nutrients at certain pH values, narrow for others, and the chart often comes with a moral: keep your solution pH between 5.5 and 6.5.

I discussed some of these issues in a <u>previous post</u>, but it's worth revisiting them here with a clearer chart. The problem is that most of these charts trace back to soil agronomy research from the 1930s and 1940s. They're not based on solution chemistry relevant to hydroponics. They conflate microbial activity, lime chemistry, and plant physiology with solubility. And, in some cases, they are flat out misleading.

Let me talk about why the traditional chart is wrong, what modern chemistry tells us, and how a more honest representation looks.

### Where the Old Charts Went Wrong

The historical diagrams were designed for soils, not hydroponic solutions. For example:

- Nitrate (NO₃⁻): In many charts, nitrate availability appears to fall off at low pH. In reality, nitrate is completely soluble across any reasonable pH range. The "loss" in those charts comes from soil microbial nitrification shutting down under acidic conditions, not relevant when you're directly dosing nitrate salts in solution.
- Calcium (Ca) and Magnesium (Mg): Old charts show Ca and Mg as always available at high pH. But that ignores precipitation with phosphate or carbonate, which can start as low as pH 6.2 for Ca. The old charts show high Ca and Mg availability at high pH because the high pH in soils was usually achieved by the addition of dolomite or lime, which greatly increased Ca and Mg

concentrations in soil, this is not the case in a soilless setup.

- Micronutrients (Fe, Mn, Zn, Cu): These are shown as less available above neutral pH, which is true for unchelated forms (they hydrolyze and precipitate quickly). But in hydroponics, I typically use chelates, and their stability extends availability well above pH 7.
- Phosphorus (P): Charts often suggest a broad plateau around pH 6 to 7. In truth, phosphate solubility is sharply influenced by calcium concentration and carbonate alkalinity. The idea of a universal "wide bar" is misleading.

These errors matter. They lead growers to overemphasize the magic 5.5 to 6.5 range without appreciating that different nutrients behave differently, and that chelation or precipitation risks can change the picture entirely.

### **Building a Better Chart**

To improve on the old diagrams, I constructed a new heatmap. Instead of arbitrary bar widths, each nutrient's relative availability (scaled from  $\theta = low$  to l = high) is modeled based on actual solubility, speciation, and chelation chemistry. The chart covers pH 4.0 to 8.5.



Updated chart I created for nutrient availability in soilless systems based on chemical and plant physiology principles

This chart is not an absolute quantitative prediction (real world systems have variations depending on concentration, alkalinity, chelate type, etc.). But it captures the directional chemistry more honestly. For nutrients that are effectively pH independent (like nitrate), the line is flat. For those that crash with pH (like unchelated iron), the line drops. And for Ca and Mg, I've introduced tapering to reflect phosphate precipitation behavior.

### **Nutrient by Nutrient Ranges**

Here's a summary table describing the approximate pH behavior, the range of best availability, and the underlying reason:

| Nutrient | Broad<br>Availability<br>Range | Notes / Reason |
|----------|--------------------------------|----------------|
|----------|--------------------------------|----------------|

| NO з <sup>–</sup> - N | 4.0 to 8.5                                 | Soluble across all relevant pH; uptake independent of pH in hydroponic solution. Old charts confused microbial nitrification with solubility. |
|-----------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| NH 4 + - N            | Best <6.5;<br>declines >7.0                | At higher pH, conversion to unionized NH3 increases, which is less available and potentially toxic.                                           |
| Phosphorus<br>(P)     | Peak 5.5 to<br>6.5; drops<br><5.2 and >7.0 | Solubility falls at high pH due to Ca+P precipitation (starting ~6.2); also limited at low pH by fixation and speciation.                     |
| Potassium<br>(K)      | 4.0 to 8.5                                 | Monovalent cation, highly soluble, minimal precipitation issues (sometimes K containing silicates at higher pH values)                        |
| Calcium (Ca)          | Stable <6.0;<br>declining >6.2             | Precipitates with phosphate and carbonate as pH rises; availability falls gradually above ~6.2.                                               |
| Magnesium<br>(Mg)     | Stable <6.5;<br>mild decline<br>>7.0       | Mg+P precipitation is less aggressive than Ca+P; solubility loss is slower but still possible at higher pH.                                   |

| Sulfate<br>(SO4 <sup>2-</sup> )  | Broad 4.5 to<br>8.0                | Generally soluble. At very low pH, some soils can adsorb sulfate due to protonated variable charge surfaces, reducing availability. At very high pH, reduced root uptake efficiency and competition with other anions can occur; in concentrated Ca <sup>2+</sup> + SO <sub>4</sub> <sup>2-</sup> systems gypsum may precipitate by saturation. |
|----------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Iron (Fe,<br>unchelated)         | Max <5.5;<br>falls sharply<br>>6.0 | Fe <sup>3+</sup> hydrolyzes and precipitates as hydroxides and oxides above ~pH 6; nearly unavailable by pH 7.                                                                                                                                                                                                                                  |
| Manganese<br>(Mn,<br>unchelated) | Best <6.0;<br>declining >6.3       | Mn <sup>2+</sup> oxidizes and precipitates above neutral pH.                                                                                                                                                                                                                                                                                    |
| Zinc (Zn,<br>unchelated)         | Best <6.0; low >7.0                | Zn <sup>2+</sup> solubility decreases with increasing pH; precipitates as hydroxide/carbonate.                                                                                                                                                                                                                                                  |
| Copper (Cu, unchelated)          | Best <6.0;<br>poor >7.0            | Cu <sup>2+</sup> strongly hydrolyzes, falls<br>out of solution quickly with<br>rising pH.                                                                                                                                                                                                                                                       |
| Boron (B)                        | Best 5.5 to<br>6.8                 | Boric acid is readily available in this range; at higher pH, more borate forms, reducing uptake.                                                                                                                                                                                                                                                |
| Molybdenum<br>(Mo)               | Improves >6.0                      | Molybdate solubility increases with pH; plants often deficient in acidic conditions, more available at neutral/alkaline pH.                                                                                                                                                                                                                     |

#### The Ca vs Mg Difference

A key improvement over older charts is distinguishing calcium from magnesium. While both can precipitate with phosphate, their behaviors differ:

- Ca+P precipitation is strong and begins around pH 6.2, especially in solutions with 1 to 3 mM phosphate. Brushite, dicalcium phosphate, and hydroxyapatite phases progressively reduce solubility.
- Mg+P precipitation is slower and less pronounced. Mg<sup>2+</sup> is more strongly hydrated and less eager to form insoluble phosphates. It tends to stay soluble longer, only declining gently above pH 7.

### Chelation: The Missing Dimension

My chart above shows unchelated forms. In real hydroponics, Fe, Mn, Zn, and Cu are almost always chelated. Depending on the chelate (EDTA, DTPA, EDDHA, HBED), stability can be maintained up to pH 7.5 to 9. This dramatically extends availability, particularly for Fe. A separate chart is needed to show chelated behavior.

### Why This Matters

So why obsess about getting this chart right?

Because oversimplified charts lead to oversimplified thinking. If you believe nitrate solubility collapses below pH 6, you

might panic when your reservoir drifts to 5.2, even though  $NO_3^-$  is unaffected. If you believe Ca is "always available," you might miss that phosphate precipitation is happening in your tank right now at pH 6.3. And if you don't distinguish between chelated and unchelated micronutrients, you'll misdiagnose deficiencies.

A better chart isn't just about scientific pedantry. It's about helping growers make better decisions: when to acidify, when to buffer, when to choose a stronger chelate, and when to worry (or not worry) about a drifting pH.

### Final Thoughts

The classic nutrient pH charts had their place in teaching basic agronomy 80 years ago. But hydroponics deserves more precision. Nutrients don't all behave the same way. Some are flat across the entire range  $(NO_3^-,\ K)$ . Some rise or fall gradually (B, Mo, Mg). Others are brutally sensitive (Fe without chelates). And precipitation interactions mean that Ca and phosphate availability are tied together, not independent.

This new heatmap and the accompanying table aren't the last word, they're a more honest starting point. The real message is: understand the chemistry, not just the cartoon.

## Can you manage downy mildew in hydroponic basil with

### organic foliar sprays?

mildew. by the Basil downv caused obligate oomycete Peronospora belbahrii, has become one of the most serious diseases affecting hydroponic and greenhouse basil production globally. The pathogen, first documented in Europe in 2001 and later detected in the United States in 2007, requires high relative humidity (at least 85%) or wet leaves to infect plants (1). Temperature preferences favor moderate conditions around 20°C rather than higher temperatures, which explains why the disease thrives in controlled environment systems where leaf wetness and humidity are difficult to manage (1).



Downy mildew in basil shows characteristic black marks on the underside of leaves

Understanding the infection process is critical for designing effective spray programs. Under conditions of continuous free moisture, sporangia germinate within 3 to 5 days by producing germ tubes that penetrate basil leaves directly through the epidermis, typically without entering through stomata (2). Seven days after initial infection, sporangiophores bearing new sporangia emerge through stomata on both the upper and lower leaf surfaces, creating secondary inoculum that spreads rapidly throughout greenhouse facilities (2). This relatively

short cycle from infection to sporulation means that preventive measures must start before visible symptoms appear.

Multiple field trials evaluating organic fungicides have delivered sobering results for growers seeking alternatives to conventional chemistry. A comprehensive study testing products approved for organic production, including copper octanoate, hydrogen dioxide, sesame oil, neem oil, thyme oil, citric acid, Bacillus species, and Streptomyces lydicus, found that none were effective at controlling downy mildew when applied to susceptible basil cultivars (3). Applications were made weekly starting before symptom development, and efficacy was assessed based on incidence of symptomatic leaves rather than severity, reflecting the zero tolerance for disease on fresh market herbs (3). A summary of the tested fungicides and their effectiveness is shown on the following table.

| Product (Active<br>Ingredient)    | Mode of Action                                    | Effectiveness |
|-----------------------------------|---------------------------------------------------|---------------|
| Cueva (Copper octanoate)          | Contact fungicide,<br>disrupts enzyme<br>function | Ineffective   |
| OxiDate (Hydrogen dioxide)        | Oxidizing agent, contact action                   | Ineffective   |
| Organocide (Sesame oil)           | Physical barrier, suffocation                     | Ineffective   |
| Trilogy (Neem oil)                | Physical barrier, azadirachtin content            | Ineffective   |
| Forticept EP #1 (Thyme oil)       | Essential oil,<br>contact action                  | Ineffective   |
| Procidic (Citric acid)            | pH modulation,<br>contact action                  | Ineffective   |
| Actinovate (Streptomyces lydicus) | Biocontrol,<br>competitive<br>colonization        | Ineffective   |

| Product (Active Ingredient)          | Mode of Action                 | Effectiveness |
|--------------------------------------|--------------------------------|---------------|
| Companion (Bacillus subtilis)        | Biocontrol, induced resistance | Ineffective   |
| Double Nickel (B. amyloliquefaciens) | Biocontrol,<br>antibiosis      | Ineffective   |
| Regalia (Reynoutria sachalinensis)   | Plant defense<br>activator     | Ineffective   |

The limited efficacy of organic fungicides appears related to the aggressive nature of the pathogen and the difficulty of achieving thorough foliar coverage in dense basil canopies. Even when combined with resistance inducers or natural products, organic treatments failed to provide commercially acceptable levels of disease suppression (5).

Environmental management offers more promise than chemical sprays alone. Light suppresses sporulation of *P. belbahrii*, with continuous light or supplemental lighting during nighttime hours substantially reducing spore production (6). Growers can exploit this by maintaining photoperiods longer than 13 hours or by using low-intensity supplemental lighting during dark periods. Reducing leaf wetness duration is equally important because the pathogen requires at least 24 hours of continuous moisture for infection and dense sporulation (7). In hydroponic systems, switching from overhead misting to subcanopy irrigation and increasing air movement with horizontal airflow fans can dramatically reduce infection pressure (8).

Temperature manipulation provides another non-chemical tool. Passive heat treatment using transparent plastic covers to raise greenhouse temperatures during sunny periods suppressed downy mildew development without damaging basil plants (9). Temperatures above 30°C inhibit sporangiophore formation and sporangial germination, though plants must be acclimated gradually to avoid heat stress. This approach works best in greenhouse operations with sufficient ventilation control and

may be less practical in open hydroponic facilities.

Varietal resistance remains the most effective long-term strategy for hydroponic basil growers. Breeding efforts have identified resistance sources in wild basil species *Ocimum americanum*, and these traits have been successfully transferred into sweet basil backgrounds (10). Commercial varieties with improved resistance are now available, though complete immunity has not been achieved. Growers should prioritize these resistant cultivars and combine them with environmental controls rather than relying on organic fungicide sprays.

Cropping system modifications can reduce disease pressure in organic systems. Research on open field organic production found that sparse sowing density combined with resistant varieties provided better control than chemical treatments alone (11). In hydroponics, maintaining wider plant spacing, particularly in NFT or DWC systems where humidity tends to be higher, allows better air circulation and faster leaf drying after irrigation events.

The reality for hydroponic basil producers is that organic foliar sprays, when used alone, will not provide adequate downy mildew control on susceptible varieties. The pathogen's rapid lifecycle, preference for humid greenhouse conditions, and resistance to contact fungicides makes chemical intervention largely ineffective without supporting measures. Successful organic management requires integrating resistant varieties, environmental manipulation (particularly light, humidity, and leaf wetness control), appropriate plant spacing, and vigilant monitoring for early disease detection. Growers who continue relying primarily on organic sprays should expect continued losses, while those who adopt integrated approaches combining genetics and environment will achieve better results.

# Calcium silicate (wollastonite) in soilless crops

Silicon in media is not a magic switch. In soilless systems it can help, it can do nothing, and at the wrong rate or pH it can hurt. Calcium silicate sources such as wollastonite release plant-available Si into inert substrates and typically raise pH, which is useful in peat but potentially more risky in coir or already alkaline systems. A recent substrate study quantified this clearly: wollastonite steadily released Si for months and increased media pH about 0.5 to 1 unit depending on substrate composition (1). With that in mind, here is the evidence for tomatoes and cucumbers grown without soil, focusing only on media or root-zone applications.



Vansil CS-1, one of the most common forms of calcium silicate (wollastonite) used as an amendment in soilless crops.

#### **Tomatoes**

Two independent Brazilian groups that amended substrate with calcium silicate found quality benefits but also ratesensitivity. In a factorial test across Si sources and doses, calcium silicate treatments improved postharvest durability and maintained physicochemical quality of fruits; the effect size depended on the source and the dose used (2). A protected-environment pot study that mixed calcium silicate into the substrate before transplanting reported reductions in gas exchange and chlorophyll at midcycle at higher rates, a warning that more is not always better (3). Earlier yield work that compared sources also detected response to silicon fertilization in tomatoes, but the magnitude varied with rate and material (4).

#### Cucumbers

When wollastonite was incorporated into the soilless substrate, 3 g  $L^{-1}$  increased yield by ~25% under moderate moisture restriction, with no penalty to soluble solids or fruit size. Lower doses or excessive irrigation did less (5). A separate work that applied a calcium-silicate solution into the substrate showed small gains in biomass under specific moisture regimes and no change in soluble solids, again pointing to context and dose as the deciding factors (6).

### Practical takeaways for media use

1. Treat calcium silicate like a weak liming Si source. Expect a pH rise. In peat this can be helpful, in coir

- or high-alkalinity waters it can push you out of range (1).
- 2. Dose conservatively, then verify with tissue Si or leachate pH before scaling. Tomatoes show rate-sensitive physiology (3).
- 3. Target crops and situations with the strongest evidence. Cucumbers under moderate moisture restriction and strawberries in organic substrates show the clearest yield and quality benefits (5), (7).

### Summary table — media or root-zone Si only

| Crop   | Medium and<br>Si source                                      | Application rate                                                                         | Positive<br>effects on<br>yield or<br>quality                                                                         | Reported negatives                                                                                         | Ref |
|--------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----|
| Tomato | Substrate<br>mix, calcium<br>silicate<br>among Si<br>sources | Field-equivalent<br>0 to 800 kg SiO <sub>2</sub><br>ha <sup>-1</sup> mixed pre-<br>plant | Improved postharvest durability and maintained physicochemical quality vs control; effect depended on dose and source | None specified at optimal rates                                                                            | (2) |
| Tomato | Substrate, calcium silicate mixed before transplant          | 0, 150, 300,<br>450, 600 kg ha <sup>-1</sup>                                             | _                                                                                                                     | Reduced gas exchange and chlorophyll at midcycle at higher rates, indicating potential performance penalty | (3) |

| Crop     | Medium and<br>Si source                                 | Application rate                                                          | Positive<br>effects on<br>yield or<br>quality                                  | Reported negatives                                                     | Ref        |
|----------|---------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|
| Tomato   | Substrate, silicon sources including calcium silicate   | Multiple rates                                                            | Yield responded<br>to Si<br>fertilization<br>depending on<br>source and rate   | _                                                                      | (4)        |
| Cucumber | Soilless<br>substrate,<br>wollastonite                  | 3 g L <sup>-1</sup> of<br>substrate under<br>75-85% container<br>capacity | +24.9% yield vs<br>untreated;<br>fruit size and<br>soluble solids<br>unchanged | None noted at that rate                                                | <u>(5)</u> |
| Cucumber | Substrate<br>drench,<br>calcium<br>silicate<br>solution | 50-100 mg L <sup>-1</sup><br>SiO <sub>2</sub> applied to<br>substrate     | Biomass gains under specific moisture regimes; quality unchanged               | No quality gain at<br>tested doses;<br>response moisture-<br>dependent | (6)        |
| Any      | Peat or coir<br>mixes,<br>wollastonite                  | ~1 g L <sup>-1</sup> media<br>typical in study                            | Steady Si<br>release over<br>months supports<br>long crops                     | Raises media pH by<br>about 0.5-1 unit<br>depending on<br>substrate    | (1)        |

#### **Bottom line**

Use calcium silicate where the crop and context justify it, not by default. For cucumbers and strawberries the upside on yield and quality is most consistent when Si is in the root zone. For tomatoes, treat calcium silicate as a quality tool with a narrow window and verify plant response; higher rates can backfire physiologically. If you want to try calcium silicate, mix wollastonite with your media at a rate of 3g  $L^{-1}$ , then test the effect on pH and Si in tissue.

# A low cost DIY oil IPM for your crops

An emulsified vegetable oil spray can smother mites and soft-bodied insects and can suppress powdery mildew if you actually coat the target. Soybean oil has the strongest evidence. Corn oil works too, and blending the two offers some advantages. In the following article I tell you how to prepare such a spray as well as some of the scientific evidence showing how it works.



Corn oil, one of the main components of this IPM spray

### Why combine soybean and corn oil?

- Fatty acid profiles differ. Soybean oil is richer in unsaturated fatty acids (linoleic, linolenic), while corn oil contains more oleic and palmitic. That mix can change the viscosity and spreading behavior on leaves.
- **Broader efficacy.** Soybean oil has strong data against powdery mildew, mites, and whiteflies (1) (2) (3). Corn oil has been validated in cucumber mildew trials (5). Using both hedges against variability between pests and

crops.

• Physical properties. Mixed oils can emulsify more easily and form finer droplets than a single oil, which may improve coverage and reduce visible residues.

## Why use both Tween 20 and Tween 80?

- Hydrophilic balance. Tween 20 (polyoxyethylene sorbitan monolaurate) is more hydrophilic, while Tween 80 (polyoxyethylene sorbitan monooleate) is more lipophilic. Together, they stabilize emulsions of mixed triglyceride oils better than either one alone.
- Reduced creaming/separation. A dual-Tween system forms smaller, more stable droplets that resist breaking apart. This means the concentrate stays uniform longer and the spray deposits more evenly on foliage (4).

#### Step 1. Prepare the concentrate

Mix in a clean container:

- Soybean oil: 200 mL per liter (~760 mL per US gallon)
- Corn oil: 200 mL per liter (~760 mL per US gallon)
- Tween 20: 10 mL per liter (~38 mL per gallon)
- Tween 80: 10 mL per liter (~38 mL per gallon)
- Fill with clean water to reach 1 L (or 1 gal).

Mix for at least 30 minutes, ensure it is uniform. Always mix well before use. This is the concentrate: 20% soybean oil, 20% corn oil, 1% Tween 20, 1% Tween 80.

## Step 2. Dilute for spraying

For foliar application:

- **Dilution rate:** Add ~20mL of concentrate per liter of water (~75 mL per US gallon of water). If pests are present you can increase the rate up to 32mL/L (~120mL/gal).
- Note on coverage: Coverage is critical for this spray to work as it only kills insects on contact or prevents PM by building an oil film on the leaf that prevents spore germination. Without full coverage effectiveness will drop.

This produces a **0.8% oil spray** with **0.02% Tween 20 and 0.02% Tween 80** in the final spray solution. Mix well before use.

#### Shelf life considerations

- Concentrate: A freshly prepared concentrate can stay stable for several weeks if kept sealed, cool, and out of light. Always shake well before use, since some slow separation can occur.
- **Diluted spray:** Once mixed with water, use the spray the same day. Emulsions can separate within 12-24 hours, and microbial growth in water can destabilize the mix. Discard leftovers rather than storing diluted spray.
- Indicators of instability: Layering, large oil droplets, or visible separation mean the emulsion is breaking, don't spray that on plants without mixing well again.

## Why it works

Soybean oil sprays at 2% suppressed powdery mildew on roses and tomatoes (1), reduced spider mites by 97-99% (2), and

deterred whiteflies (3). Corn oil added control of cucumber mildews (5). Tweens stabilize and spread the oils (4).

#### **Bottom line**

- Concentrate: 200 mL soybean oil + 200 mL corn oil + 10 mL Tween 20 + 10 mL Tween 80 per liter (or 760 mL + 760 mL + 38 mL + 38 mL per gallon), topped up with water.
- Spray dilution: 75 mL concentrate per gallon of water.
- Final spray: 0.8% oil, 0.02% Tween 20, 0.02% Tween 80.
- Shelf life: Weeks for concentrate (if stored sealed, cool, dark); hours for diluted spray.

This blended, dual-Tween foliar spray is a low-cost, evidence-backed way to add an oil-based control into hydroponic IPM programs.

# Recent advances in hydroponic cucumber cultivation: media, irrigation, nutrition and biostimulants

Cucumber has become a model crop for testing new soilless technologies, with greenhouses adopting alternative substrates, precision fertigation and biostimulants. Over the last decade a series of peer-reviewed studies have clarified what actually shifts growth and yield, and what is still more hype than practice.



A soilless cucumber greenhouse using coco coir.

# Substrate choices: coir, waste materials and microbiome effects

The clearest advance is the repeated demonstration that coconut coir outperforms rockwool in cucumbers. A 2022 Heliyon study reported higher leaf area index, greater yields and increased mineral content (Ca, Mg, S, Cl, Zn) in coir compared with rockwool, alongside shifts in fruit amino acids and flavor compounds (1). This is not marginal, it reflects both physiology and quality.

Efforts to cut peat use are also accelerating. A 2025 Scientific Reports trial tested agricultural wastes such as cocopeat, palm peat, vermicompost, sawdust and pumice, finding several blends that produced transplant vigor comparable to peat moss (2). Another study replaced cocopeat with rice straw, sawdust and compost over two seasons; rice straw and coir-rice blends gave the best irrigation water productivity

and photosynthesis with yields close to cocopeat (3). In parallel, wood fiber has been tested in combination with peat under staged nitrogen inputs, showing that fiber proportion and N rate jointly determine nutrient uptake efficiency (4).

Beyond performance metrics, substrate strongly shapes the cucumber root microbiome. A 2022 Frontiers in Microbiology study showed that different artificial substrates led to distinct bacterial community structures and predicted functions in roots, highlighting that choice of media can influence not only plant nutrition but also microbial dynamics (6).

Finally, biochar-compost amendments are emerging as candidate peat replacements. A 2023 trial demonstrated improved cucumber seedling growth with certain biochar-compost mixes, though physical properties still dictated success (5).

**Takeaway:** Coir is a proven upgrade over rockwool. Waste-based and fiber blends can substitute part of peat if their hydrophysical traits are tuned. Substrates also rewire root microbiomes, adding another layer to consider.

# Irrigation and fertigation: oxygenation and nutrient recipes

Irrigation research has focused on dissolved oxygen. A 2023 Scientific Reports paper tested micro-nano bubble irrigation: raising water D0 from  $\sim 4$  to 9 mg·L $^{-1}$  increased yield and irrigation water use efficiency by  $\sim 22\%$ , while boosting vitamin C, soluble solids and photosynthesis (7). The effect is practical, low oxygen is common in dense cucumber crops under low light.

On the nutrient side, hydroponics consistently outperforms

soil. A 2025 Scientific Reports comparison found cucumbers in Hoagland solution under soilless culture had taller plants, more flowers and nodes, and 9-19% more fruits than soil-grown controls on alternative formulations (8). These are large differences that underscore the importance of using a complete, balanced solution and not cutting corners on formulation.

**Takeaway:** Boosting dissolved oxygen is a low-cost irrigation improvement. And nutrient recipes matter, generic soil formulas do not translate well to hydroponics, where Hoagland-type solutions remain robust.

# Nutrient interactions: silicon and iron

Element interactions are less visible but no less important. A 2020 Frontiers in Plant Science study showed that supplying silicon in hydroponics triggered iron deficiency responses in cucumber, even under adequate Fe, and altered recovery after resupply (9). This is a reminder that "beneficial" elements are not always benign and should be managed carefully, especially when layering biostimulants or micronutrient supplements.

## Biostimulants and stress management

Humic substances remain the most tested tools. A 2024 Scientific Reports study under  $10~dS\cdot m^{-1}$  NaCl found that foliar humic acid sprays, especially when combined with grafting onto tolerant rootstocks, improved cucumber growth, antioxidant activity and secondary metabolism relative to

untreated controls (10). This reinforces humics as a stress-mitigation option rather than a universal growth booster.

Microalgae are also being trialed. A 2023 MDPI study using *Chlorella vulgaris* suspensions increased root dry biomass of cucumber seedlings in hydroponic culture (11). The shoot response was more variable, but the root effect suggests promise for early growth stages.

Grafting remains a practical biostimulant in the broad sense. A 2023 *Environmental Pollution* study showed that salt-tolerant rootstocks reduced Na transport into cucumber shoots, improving yield and fruit quality under salinity (12).

**Takeaway:** Humic acids and grafting can buffer salinity stress, while microalgae show root growth potential. None of these replace proper fertigation, but they add resilience once fundamentals are stable.

## **Practical synthesis**

- 1. **Switch to coir** if you are still on rockwool. Yield and mineral improvements are consistent (1).
- 2. **Trial waste substrates cautiously.** Rice straw and fiber blends can work, but only when physical properties are controlled (2) (3).
- 3. Oxygenate irrigation water. in NFT systems Aiming for  $\sim 9$  mg·L<sup>-1</sup> DO has measurable payoffs in yield and quality (7).
- 4. **Use complete nutrient recipes.** Hoagland still outperforms incomplete alternatives (8).
- 5. Watch element interactions. Silicon can complicate iron nutrition in hydroponics (9).
- 6. Layer biostimulants for stress, not yield. Humic acids, grafting and microalgae add tolerance or early root

vigor but only after fertigation and media are optimized (10) (11) (12).

# Moringa extract as a biostimulant in hydroponics

Moringa leaf extract (MLE) is a rather recent addition to the biostimulant market. Below I focus on peer-reviewed work in hydroponic or soilless systems, with attention to yield, quality, toxicity, and dose timing.



Moringa plant leaves, commonly used to create extracts

#### Evidence and discussion

**Hydroponic lettuce.** A greenhouse hydroponic study applied MLE at transplant via root dip, then three foliar sprays at 10-day intervals. Marketable yield increased around 30% vs control, leaf area rose, and leaves were less susceptible to Botrytis after harvest. The paper characterized MLE chemistry but treated it mainly as a formulated extract; the schedule, not just the material, clearly mattered (1).

**Tomato in soilless culture.** In cherry tomato, four applications of 3.3% w/v MLE, given every two weeks as either foliar or root drenches, improved biomass and increased fruit yield and quality metrics like soluble sugars, protein, antioxidants, and lycopene. 3.3% equals ~33 000 ppm. The same trial compared MLE to cytokinin standards and found MLE competitive when applied on a schedule, not just once (2).

Pepper and tomato under protected cultivation. A peer-reviewed study in a protected environment tested weekly foliar sprays from two weeks after transplant until fruit set. Tomato and pepper showed higher chlorophyll index and fruit firmness, with cultivar-dependent yield gains (3). A separate field-protected trial in green chili parsed delivery method and concentration: seed priming plus foliar MLE at 1:30 v/v (3.3%) delivered the most consistent improvements in growth and a ~46% rise in fruit weight per plant; vitamin C in fruit climbed up to ~50% with foliar 1:20 v/v (5%) (4).

Quality and nitrate in leafy greens. Lettuce grown under glasshouse conditions responded to 6% MLE foliar sprays with higher vitamin C and polyphenols in one season, and lower nitrate accumulation in another. Six percent equals ~60 000 ppm. Effects were season and cultivar dependent, which should temper expectations (5).

**Reviews for context.** Two recent reviews summarize MLE's biostimulant activity and mechanisms, with repeated emphasis

on dose and frequency dependence and the reality that extraction protocol changes outcomes. They also highlight hormesis and allelopathic risks at higher doses or with sensitive species (6), (7).

Responses are real but system-specific. Yield and quality gains show up most consistently when MLE is scheduled repeatedly at moderate concentrations and aligned with crop phenology.

# Reported effects on yield and quality in hydroponic/soilless crops

| Crop & system                          | MLE dose (%)                                                   | Application method & timing                                                | Yield effect                                    | Quality<br>effect                                                        | Source |
|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|--------|
| Lettuce,<br>perlite<br>hydroponic      | Not explicitly stated; applied as standardized aqueous extract | Root dip at<br>transplant,<br>then foliar<br>sprays<br>every 10<br>days ×3 | Marketable<br>yield ↑ ~30%<br>vs control        | Higher pigments and total phenolics; postharvest Botrytis severity ↓ 32% | (1)    |
| Cherry<br>tomato,<br>soilless<br>pots  | 3.3%                                                           | 100 mL per<br>plant,<br>foliar or<br>root, every<br>14 days ×4             | Fruit yield  † 26–38% depending on route        | Fruit sugars, protein, antioxidants, lycopene f                          | (2)    |
| Tomato,<br>protected<br>soilless       | Not reported                                                   | Weekly<br>foliar from<br>2 WAT to<br>fruit set                             | Positive,<br>cultivar<br>dependent              | Higher<br>chlorophyll<br>index; firmer<br>fruit                          | (3)    |
| Green<br>chili<br>pepper,<br>protected | 3.3%, 5%,<br>10%                                               | Seed priming ± foliar; best was priming + 1:30 foliar                      | Fruit weight per plant 1 ~46% with priming+1:30 | Vitamin C ↑ up to ~50% with 1:20 foliar; no change in capsaicin          | (4)    |

| Crop &                              | MLE dose (%) | Application method & timing   | Yield effect        | Quality<br>effect                                              | Source     |
|-------------------------------------|--------------|-------------------------------|---------------------|----------------------------------------------------------------|------------|
| Lettuce,<br>glasshouse<br>substrate | 6%           | Foliar,<br>seasonal<br>trials | Season<br>dependent | Vitamin C and polyphenols ↑ in 2020; nitrate content ↓ in 2019 | <u>(5)</u> |

## **Practical dosing windows**

| Crop                    | When to apply                                                              | Practical note                                                                          | Source     |
|-------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------|
| Lettuce<br>(hydroponic) | Transplant dip,<br>then every 10<br>days through<br>vegetative phase       | Schedule matters at least as much as concentration in this protocol                     | (1)        |
| Tomato                  | Every 14 days from early vegetative through early fruiting, foliar or root | 3.3% worked across<br>routes; root drenches<br>often gave stronger<br>biomass responses | <u>(2)</u> |
| Pepper                  | Seed priming before sowing plus early foliar during preflower to fruit set | Combined priming and 3.3% foliar outperformed single methods                            | <u>(4)</u> |
| Tomato and pepper       | Weekly foliar<br>from 2 WAT to<br>fruit set                                | Useful pattern for protected cultivation programs                                       | <u>(3)</u> |

# **Toxicity and limits**

Reviews document allelopathic and inhibitory effects at higher doses, with hormesis explaining the switch from stimulation to

suppression as concentration increases. Sensitive species and young tissues are at greater risk. Use consistently timed foliar applications for best results, these have been studied much more thoroughly across many more crop species. MLE has inhibitory effects on seed germination and seedling growth for some plants, so refrain from using in very early crop stages unless the species isn't sensitive (6), (7).

#### **Conclusions**

If you want to test MLE in hydroponic or soilless production, use the following guidelines:

- 1. Use moderate concentrations in the 3-5% range for foliar applications (safer than root applications).
- 2. Time applications with vegetative growth and preflower phases, repeating at weekly intervals.
- 3. Expect cultivar and season effects, especially regarding quality.
- 4. Lookout for toxicity symptoms if using higher concentrations (>5%).
- 5. Test carefully before using on seedlings or recently rooted cuttings.

Do the basics right and you can get measurable gains in yield and quality with less risk of phytotoxicity. The citations above should help guide your use of this new biostimulant.

# **Exogenous Root Applications**

# of Wetting Agents in Soilless Media

#### Introduction

Dry peat, coir, rockwool or bark mixes can become water repellent, which creates uneven moisture and nutrient delivery around roots. Wetting agents reduce surface tension and restore wettability by improving water contact with hydrophobic surfaces, an effect well documented for organic growing media used in horticulture (6). In soilless systems, exogenous root applications are used to correct dry-back, stabilize irrigation performance, and improve nutrient distribution. This post reviews what has been tested, how these agents affect mineral nutrition, water uptake, yield and quality, known toxicity limits, and realistic application rates.



Effect of surfactants on roots. Taken from (7)

#### **Evidence and discussion**

#### Types tested

Most root-zone wetting agents in horticulture are nonionic surfactants such as alcohol ethoxylates, block copolymers, or organosilicone derivatives; anionic formulations are less common for routine root use due to higher phytotoxic risk, while cationic types are generally avoided; amphoteric agents are used less frequently but appear in some products. The role of wetting agents to counter water repellency in organic media is supported by a comprehensive review of wettability mechanisms and amendments (6).

#### Water uptake and distribution

In rockwool and coir, adding a nonionic surfactant to the fertigation stream at doses from 2 to 20 000 ppm showed that a **minimal** dose could be sufficient: **2 ppm** increased easily available water by more than 600 percent, while higher concentrations gave no extra benefit (1). Across peat, coir, and bark, wetting agents improved hydration efficiency, although severely dry materials retained some hydrophobic pockets that were not fully overcome by surfactant treatment (2).

#### Mineral nutrition

In a melon crop on rockwool and reused coco fiber, weekly fertigations with a nonylphenol ethoxylate at about 1000 ppm reduced nitrate and potassium losses in drainage and increased potassium uptake, while leaving total water use and pH unchanged (3). In lettuce, fertigation with a nonionic organosilicone-type surfactant at 200 ppm and 1000 ppm improved nutrient use efficiency without increasing yield, indicating better capture of applied nutrients for the same biomass and specifically in field trials with a methyl-oxirane nonionic surfactant. Direct lettuce evidence of improved nutrient use efficiency and root-zone wetting with ~200-1000

**ppm** doses comes from an in-field trial using a nonionic methyl-oxirane surfactant (6) and is detailed further under quality effects below.

#### Yield and quality

Yield responses depend on whether water distribution was limiting. In lettuce, the nonionic surfactant improved nutrient use efficiency but did **not** increase marketable yield under well-watered conditions. Quality can benefit: lettuce fertigated with a nonionic methyl-oxirane surfactant at ~1000 ppm showed a significant reduction in leaf nitrate accumulation compared with controls, alongside indications of shallower, more uniform wetting of the upper root zone (6).

#### Persistence and accumulation

Repeated use matters. In sand models, a polyoxyalkylene polymer surfactant (PoAP) sorbed to particles and **increased hydrophobicity** after repeated applications, whereas an alkyl block polymer (ABP) maintained or improved wettability and did not leave a hydrophobic residue. Chemistry dictates long-term behavior, so product choice is critical (4).

#### **Toxicity**

There is a hard ceiling for some agents. Hydroponic lettuce exposed to the anionic detergent Igepon showed acute root damage at ≥250 ppm, with browning within hours and growth suppression, although plants recovered after the surfactant degraded in solution (5). Practical takeaway: avoid harsh anionic detergents and keep any surfactant well below known toxicity thresholds.

#### **Tables**

Table 1. Water behavior in soilless substrates after root-zone wetting agents

| Study<br>(Ref) | System and media                                               | Surfactant and dose                         | Key outcome                                                                                                   |
|----------------|----------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| (1)            | Rockwool and coir, new and reused                              | Nonionic<br>surfactant,<br>2—20 000 ppm     | <pre>2 ppm raised easily   available water by &gt;600 percent; higher   doses gave no   additional gain</pre> |
| (2)            | Peat, bark,<br>coir under<br>different<br>initial<br>moistures | Commercial<br>wetting agent,<br>low to high | Hydration efficiency improved across materials, but extremely dry media retained some hydrophobic zones       |

Table 2. Nutrient dynamics, yield, quality, and safety

| Study<br>(Ref) | Crop and system                           | Regime and dose                         | Observed effect                                                                               |
|----------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|
| (3)            | Melon in<br>rockwool and<br>reused coco   | Weekly<br>fertigation at<br>~1000 ppm   | Lower nitrate and potassium leaching, higher K uptake, no change in water use or pH           |
| <u>(6)</u>     | Lettuce,<br>fertigated<br>field context   | Nonionic<br>surfactant<br>~200—1000 ppm | Improved nutrient use efficiency; neutral yield response; reduced leaf nitrate at higher dose |
| (4)            | Sand columns,<br>repeated<br>applications | PoAP vs ABP,<br>repeated<br>dosing      | PoAP accumulated and increased hydrophobicity; ABP maintained or improved wettability         |

| Study<br>(Ref) | Crop and system           | Regime and dose                  | Observed effect                                                                        |
|----------------|---------------------------|----------------------------------|----------------------------------------------------------------------------------------|
| (5)            | Lettuce in<br>hydroponics | Anionic<br>detergent ≥250<br>ppm | Acute root phytotoxicity at and above 250 ppm; recovery after degradation of the agent |

#### **Practical rates**

In closed hydroponic or recirculating fertigation, start conservatively. Research showing benefits without injury typically used ~50–1000 ppm, with several studies centering on ~1000 ppm weekly pulses in drip systems, or ~200–1000 ppm continuous-equivalent dosing in trials on leafy greens (3) (6). Very low concentrations can already fix wettability issues, as the 2 ppm result illustrates (1). Always monitor for foaming, root browning, or oily films. Avoid cationic disinfectant-type surfactants at the root zone and keep anionic detergents far below the 250 ppm lettuce toxicity threshold (5). Choose chemistries that do not accumulate with repeated use (4).

#### Conclusion

For soilless production, exogenous root applications of wetting agents are a precise way to restore uniform wetting, stabilize nutrient delivery, and improve nutrient use efficiency. Expect neutral yield when irrigation is already optimal, but better quality in leafy greens via lower leaf nitrate, and less nutrient loss in drain when media are reused or prone to channeling. Use the lowest effective ppm, prefer nonionic chemistries validated in horticultural systems, and be wary of products that persist or sorb to media. Done right, wetting agents are a small, high-leverage tweak that keeps the entire root zone working for you, not against you.