
Connecting a low cost TDR
moisture content/EC/temp
sensor to a NodeMCUv3
I have discussed moisture content sensors extensively in the
past. I have written posts about the use of capacitive
moisture sensors to measure volumetric moisture content,
including how to create sensor stations and how to calibrate
them. However, while capacitive moisture content sensors can
be a low cost alternative for low resolution monitoring of
moisture content, more precise applications require the use of
higher accuracy sensors, such as Time Domain Reflectometry
(TDR) sensors. In this post I am going to show you how to
connect a low cost microcontroller (NodeMCUv3) to a low cost
TDR moisture content sensor. Note, some of the product links
below are amazon affiliate links, which help support this blog
at no additional cost to you.

Diagram showing cable connections between moisture content
sensor NodeMCUv3 and communication board.
While popular sensors like Teros-12 sensors cost hundreds of
dollars, lower cost alternatives have been created by Chinese

https://scienceinhydroponics.com/2023/01/connecting-a-low-cost-tdr-moisture-content-ec-temp-sensor-to-a-nodemcuv3.html
https://scienceinhydroponics.com/2023/01/connecting-a-low-cost-tdr-moisture-content-ec-temp-sensor-to-a-nodemcuv3.html
https://scienceinhydroponics.com/2023/01/connecting-a-low-cost-tdr-moisture-content-ec-temp-sensor-to-a-nodemcuv3.html
https://scienceinhydroponics.com/2021/04/arduino-hydroponics-how-to-build-a-sensor-station-with-an-online-dashboard.html
https://scienceinhydroponics.com/2021/03/calibrating-a-capacitive-moisture-water-content-sensor-for-hydroponics.html
https://scienceinhydroponics.com/2021/03/calibrating-a-capacitive-moisture-water-content-sensor-for-hydroponics.html
https://scienceinhydroponics.com/wp-content/uploads/2023/01/connection_driagram_moisture_content.png

manufacturers. Using this github repository by git user
Kromadg, I have been able to interface some of these low cost
TDR sensors with a NodeMCUv3. The NodeMCUv3 is a very low cost
microcontroller unit that you can get for less than 5 USD a
piece. It is also WiFi enabled, so this project can be
expanded to send data through Wifi to use in datalogging or
control applications. For this project you will need the
following things:

Micro USB cable1.
NodeMCUv32.
THC-S RS485 sensor (Make sure to get the THC-S model)3.
TTL to RS485 communication board4.
Breadboard and jumper cables to make connections or5.
cables and a soldering kit to make final connections.

The above diagram shows you how to connect the sensor, TTL-to-
RS485 communication board and the NodeMCUv3. You will also
want to make sure you install the ESP Software serial library
in your Arduino IDE, as the normal Software Serial library
won’t work. You can do this by downloading the zipped library
from github and then using the Sketch->Include Library menu
option. Once you do so, you can upload the following code into
your NodeMCUv3.

#include <SoftwareSerial.h>
#include <Wire.h>

// This code is a modification of the code found here
(https://github.com/kromadg/soil-sensor)

#define RE D2
#define DE D3

const byte hum_temp_ec[8] = {0x01, 0x03, 0x00, 0x00, 0x00,
0x03, 0x05, 0xCB};
byte sensorResponse[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

https://github.com/kromadg/soil-sensor
https://amzn.to/3CJKj9r
https://amzn.to/3CJKj9r
https://pt.aliexpress.com/item/1005001524845572.html
https://amzn.to/3H2tkSf
https://github.com/plerup/espsoftwareserial

byte sensor_values[11];

SoftwareSerial mod(D6, D5); // RX, TX

void setup() {
 Serial.begin(115200);
 pinMode(RE, OUTPUT);
 pinMode(DE, OUTPUT);
 digitalWrite(RE, LOW);
 digitalWrite(DE, LOW);
 delay(1000);
 mod.begin(4800);
 delay(100);
}

void loop() {
 /************** Soil EC Reading *******************/
 digitalWrite(DE, HIGH);
 digitalWrite(RE, HIGH);
 memset(sensor_values, 0, sizeof(sensor_values));
 delay(100);
 if (mod.write(hum_temp_ec, sizeof(hum_temp_ec)) == 8) {
 digitalWrite(DE, LOW);
 digitalWrite(RE, LOW);
 for (byte i = 0; i < 12; i++) {
 sensorResponse[i] = mod.read();
 yield();
 }
 }

 delay(250);

 // get sensor response data
 float soil_hum = 0.1 * int(sensorResponse[3] << 8 |
sensorResponse[4]);
 float soil_temp = 0.1 * int(sensorResponse[5] << 8 |
sensorResponse[6]);
 int soil_ec = int(sensorResponse[7] << 8 |
sensorResponse[8]);

 /************* Calculations and sensor corrections

*************/

 float as_read_ec = soil_ec;

 // This equation was obtained from calibration using
distilled water and a 1.1178mS/cm solution.
 soil_ec = 1.93*soil_ec - 270.8;
 soil_ec = soil_ec/(1.0+0.019*(soil_temp-25));

 // soil_temp was left the same because the Teros and
chinese sensor values are similar

 // quadratic aproximation
 // the teros bulk_permittivity was calculated from the
teros temperature, teros bulk ec and teros pwec by Hilhorst
2000 model
 float soil_apparent_dieletric_constant = 1.3088 + 0.1439 *
soil_hum + 0.0076 * soil_hum * soil_hum;

 float soil_bulk_permittivity =
soil_apparent_dieletric_constant; /// Hammed 2015
(apparent_dieletric_constant is the real part of permittivity)
 float soil_pore_permittivity = 80.3 - 0.37 * (soil_temp -
20); /// same as water 80.3 and corrected for temperature

 // converting bulk EC to pore water EC
 float soil_pw_ec;
 if (soil_bulk_permittivity > 4.1)
 soil_pw_ec = ((soil_pore_permittivity * soil_ec) /
(soil_bulk_permittivity - 4.1) / 1000); /// from Hilhorst
2000.
 else
 soil_pw_ec = 0;

 Serial.print("Humidity:");
 Serial.print(soil_hum);
 Serial.print(",");
 Serial.print("Temperature:");
 Serial.print(soil_temp);
 Serial.print(",");
 Serial.print("EC:");

 Serial.print(soil_ec);
 Serial.print(",");
 Serial.print("READEC:");
 Serial.print(as_read_ec);
 Serial.print(",");
 Serial.print("pwEC:");
 Serial.print(soil_pw_ec);
 Serial.print(",");
 Serial.print("soil_bulk_permittivity:");
 Serial.println(soil_bulk_permittivity);
 delay(5000);
}

Note that RE and DE are not placed on digital pins 2 and 3, as
other pins in the NodeMCUv3 carry out other functions and the
board will not initialize if it has the RS485-to-TTL
communicator connected through those pins. The R0 and RI pins
are connected to digital pins D5 and D6, this is because in
the NodeMCUv3 pins D7 and D8 are used in serial communication
by the Serial swap command and therefore create conflicts if
you use them with SoftwareSerial. The above digital pin
distribution is one of the few that works well. Note that
connecting RE or DE to digital pin 4 also works, but this
means the blue LED on the NodeMCUv3 is powered on every time
there is serial communication, a potentially undesirable
effect if you’re interested in battery powering the device.

The board should now be printing all the measurements on your
serial connection, so you should be able to see the readings
through the Serial Monitor in the Arduino IDE. In the future I
will be sharing how to expand this code to include WiFi and
MQTT communication with a MyCodo server.

If you use this code please share your experience in the
comments below!

