Understanding Calcium deficiency issues in plants

Calcium is one of the most difficult elements to properly supply to plants as its absorption is tightly linked to both chemical and environmental factors. It is very easy for growers to suffer from calcium-related problems, especially those who are growing under highly productive conditions. Issues such as bitter pit in apples, black heart in celery, blossom end rot in tomato, and inner leaf tip burn in lettuce, have all been associated with low levels of calcium in the affected tissues. In this post, we are going to discuss why this happens, how it is different for different plants, and which strategies we can use to fix the issue and get all the calcium needed into our plants’ tissue. Most of the information on this post is based on these two published reviews (1, 2, 3).

Problems with Ca absorption rarely happen because there is not enough Calcium available to a plant’s root system. In hydroponic crops, these issues happen when ample Ca is available to plant root systems and can present themselves even when apparently excess Ca is present in the nutrient solution. Concentrations of 120-200 ppm of Ca are typically found in hydroponic solutions and we can still see cases where nutrient Ca-related problems emerge. This is because issues with Ca are mostly linked to the transport of this element from roots to tissues, which is an issue that is rarely caused by the concentration of Ca available to the plants. Most commonly these problems are caused by a plant that is growing under conditions that are very favorable and Ca transport fails to keep up with other, more mobile elements. As the plant fails to get enough Ca to a specific growing point, that tissue will face a strong localized Ca deficiency and will die.

Calcium issues in different plants. Taken from this review.

When looking into a Ca problem and how to fix it, we first need to understand which plant organ is lacking proper Calcium uptake. In tomato plants, for example, blossom end rot (BER) appears when Ca fails to reach a sink organ – the fruit – while in lettuce, inner tip burn develops because Ca is unable to reach a fast-growing yet photosynthetically active part of the plant. Since Calcium transport can be increased by increasing transpiration, we might think that decreasing the relative humidity (RH) might reduce BER but this in fact increases it, because transpiration increases faster in leaves, than it does in the fruit. In this case, solving the problem involves balancing Ca transport so that it reaches the fruit instead of the leaves. Pruning of excessive leaf tissue, lowering N to reduce vegetative growth, and increasing RH – especially at night – can in fact help under these circumstances, where Ca deficiency develops in sink organs. Reducing ammonium as much as possible can also help, as ammonium can also antagonize calcium absorption due to its cationic nature.

In plants like cabbages and lettuce, a different picture emerges. In this case, increasing the RH leads to worse tip burn symptoms, and decreasing it significantly reduces tip burn, as Ca transport is increased by the increased leaf transpiration. This can be a viable strategy if the temperature is not too high. Under high temperatures, reducing RH leads to too much water stress, which causes other problems for the plants. In these cases, a preferred technique to reduce tip burn is to increase air circulation, which decreases both the RH around leaf tissue and the temperature of the plant due to the wind-chilling effect, this can increase transpiration rates without overly stressing plants.

Taken from this review.

Since in most cases these Ca issues are associated with fast growth, most measures that reduce growth will tend to reduce the severity of the Ca symptoms. Reducing the EC of solutions, reducing temperatures, and decreasing light intensity are some of the most popular mechanisms to reduce Ca problems by reducing plant productivity. These might be the most economical solutions – for example, if artificial lights are used – but it might not be favored by many growers due to the fact that it requires a sacrifice in potential yields. A potential way to attack Ca issues through growth control without reducing yields is to use growth regulators in order to suppress vegetative growth. Synthetic and natural gibberellin inhibitors are both effective at this task.

A common strategy to tackle these Ca issues is to perform foliar sprays to correct the deficiency. Weekly, calcium nitrate or calcium chloride foliar sprays can help alleviate symptoms of tip burn and black heart. Spraying plants from a young age, to ensure they always have Ca in their growing tips, is key. When performing these sprays, primordially make sure all growing tips are fully covered, as Ca sprayed on old tissue won’t really help the plant, as Ca cannot be transported from old to young leaves.




Disinfection of nutrient solutions in recirculating hydroponic systems

Plant growing systems that recirculate nutrients are more efficient in terms of fertilizer and water usage than their run-to-waste counter-parts. However, the constant recirculation of the nutrient solution creates a great opportunity for pathogens and algae to flourish and colonize entire crops, with often devastating results. In this post, we are going to discuss the different alternatives that are available for disinfection in recirculating crops, which ones offer us the best protection, and what we need to do in order to use them effectively. I am going to describe the advantages and disadvantages of each one so that you can take this into account when choosing a solution for your hydroponic crop.

Disinfection of recirculating nutrient solutions has been described extensively in the scientific literature, the papers in the following links (1,2,3,4) offer a good review of such techniques and the experimental results behind them. The discussion within this post makes use of the information within these papers, as well as my personal experience while working with growers all over the world during the past 10 years.

Image result for slow sand filtration
A slow sand filtration system will be effective at filtering most fungal and bacterial spores, but is slow. Image taken from here.

In order to kill the pathogens within a hydroponic solution, we can use chemical or non-chemical methods. Chemical methods add something to the nutrient solution that reacts with the molecules that make up pathogens, killing them in the process, while non-chemical methods will add energy to the nutrient solution in some form or filter the solution in order to eliminate undesired microbe populations. Chemical methods will often affect plants – since the chemicals are carried away with the nutrient solution – and require constant adjustments since the levels of these chemicals within the nutrient solutions need to be controlled quite carefully.

Chemical methods include sodium hypochlorite, hydrogen peroxide, and ozone additions. From these choices, both hypochlorite and hydrogen peroxide have poor disinfection performance at the concentrations tolerated by plants and are hard to maintain at the desired concentrations through an entire crop cycle without ill effects. Ozone offers good disinfection capabilities but requires additional carbon filtration steps after injection in order to ensure its removal from the nutrient solution before it contacts plant roots (since it is very poorly tolerated by plants). Additionally, ozone sterilization requires ozone sensors to be installed in the facility in order for people to avoid exposure to high levels of this gas, which is bad for human health. In all of these cases, dosages can be monitored and controlled to a decent level using ORP meters, although solely relying on ORP sensors can be a bad idea for substances like hypochlorite as the accumulation of Na and Cl can also be problematic.

The most popular non-chemical methods for disinfection are heat treatment, UV radiation, and slow sand filtration. Slow sand filtration can successfully reduce microbe populations for fungi and bacteria but the slow nature of the process makes it an inadequate choice for larger facilities (>1 ha). Heat treatment of solutions is very effective at disinfection but is energetically intensive as it requires heating and subsequent cooling of nutrient solutions. For large facilities, UV sterilization offers the best compromise between cost and disinfection as it requires little energy, is easy to scale, and provides effective disinfection against a wide variety of pathogens if the dosage is high enough. It is however important to note that some UV lamps will also generate ozone in solution, which will require carbon filtration in order to eliminate the ill effects of this chemical. If this wants to be avoided, then lamps that are specifically designed to avoid ozone generation need to be used.

Loss in soluble Fe as a function of UV radiation time. Taken from here. Note that this is irradiation time -not nutrient solution life – in a normal crop it will take 10x the time to accumulate the level of radiation since solution is not under radiation for most of the time.

If you want to use UV sterilization, you should carefully consider the power of the lamps and the flow rate needs in order to ensure that you have adequate sterilization. Most in-line UV filters will give you a flow rate in GPH at which they consider the dosage adequate for disinfection, as a rule of thumb you should be below 50% of this value in order to ensure that the solution is adequately disinfected as some pathogens will require radiation doses significantly higher than others. You can also add many of these UV filters in parallel in order to get to the GPH measurement required by your crop. UV sterilization also has a significant effect on all microbe populations in the environment (5) so consider that you will need to inoculate with more beneficial microbes if you want to sustain microbe populations in the plants’ rhizosphere.

With all these said, the last point to consider is that both chemical and UV sterilization methods will tend to destroy organic molecules in the nutrient solution, which means heavy metal chelates will be destroyed continuously, causing precipitation of heavy metals within the nutrient solution as oxides or phosphates. As a rule of thumb, any grower that uses any method that is expected to destroy chelates should add more heavy metals routinely in order to replace those that are lost. To calibrate these replacements, Fe should be measured using lab analysis once every 2 days for a week, in order to see how much Fe is depleted by the UV process. Some people have tried using other types of Fe chelates, such as lignosulfates, in order to alleviate this issue as well (6).




Optimal air speed in a hydroponic crop

Wind speed is a particularly important, yet often overlooked variable in hydroponic crops. While growers in greenhouses will pay close attention to overall gas exchange characteristics (how much air exits and enters a greenhouse) the speed of air around plant canopy is commonly not measured or optimized to maximize plant growth. In this post we will talk about why air speed is so important, why it needs to be measured around the canopy, and what you should be aiming to achieve within your hydroponic greenhouse or grow room.

Plants at higher wind speeds

The airflow around a plant will completely change the plant’s environment. As air flows around the plant it will carry away oxygen and water and will replenish carbon dioxide. Besides this, the moving air will also dramatically increase heat transfer due to convection, effectively cooling the plant substantially (this is known as wind-chill) (1). Without any air movement, the plant will saturate the air immediately around it with oxygen and water and deplete it of carbon dioxide during the day, relying solely on diffusion across this depleted layer in order to get additional carbon dioxide. This will heavily limit the plant’s ability to photosynthesize and will generally cause plants to be stunted and with a higher propensity for fungal/bacterial disease (since there is a very high relative humidity layer adjacent to the leaves).

As airflow increases, so will the plant’s metabolism. This will happen up to a point where the effects of wind chill or mechanical stress due to the air movement become too high. At low relative humidity values, high wind speeds will also pressure the plant to increase water transpiration substantially as the flowing dry air will strip the plant of humidity more efficiently. Due to this reason, optimal relative humidity will tend to be higher as airspeeds at the canopy increase. It is often quite common that to achieve optimal VPD – which often requires high humidity values at high temperatures – airspeed around plants needs to be increased to avoid fungal issues.

The airspeed around the canopy can be bad even if the in/out exchange characteristics of a room are optimal. This is because the flow of air into or out of a room says nothing about how the air is circulating through that room. Since air is a gas, it will go through paths of least resistance and will try to avoid the canopy – a very prominent obstacle – if it is allowed to. For this reason, intake/outtake structures that force air to go through the canopy and fan setups that direct air straight at the canopy structure are going to be significantly more effective at generating proper airflow. Since airspeeds around the canopy are going to be quite low (0-1m/s), it is not possible to measure these speeds accurately with regular fan-base anemometers, a hot wire anemometer will be required to make these readings. These devices will allow you to measure wind speeds that are quite low, with an accuracy of +/-0.1m/s.

A hot wire anemometer that can be used to accurately measure wind speeds around plant canopy

So what is the optimal airspeed you should be aiming for at plant canopy? The higher the airspeed, the higher your plant metabolism will tend to be and the more pressure the plant will feel to adapt to these environmental conditions. At some point, the plant is unable to benefit from increases in airspeeds due to the increased transpiration and wind-chill caused by the increased air-movement. The results of a study on tomato plants with different leaf area index (LAI) values in wind tunnels are shown below. As you can see, crops with lower LAI values will tend to do be photosynthetically more efficient, probably because these low LAI values are more adapted to higher airflow conditions. However, this does show that a limit to increases in photosynthetic rate based on airflow does exist.

To reach optimal photosynthetic rates, the wind speed around the canopy should be at least 0.3m/s, as this is around the point where flowering plants like tomatoes start reaching a plateau of photosynthetic production. Having a higher rate will provide little additional benefits under normal conditions, although aiming for 0.5-0.6m/s might provide a buffer to ensure that all regions of the canopy are above the critical 0.3/s threshold. Aim to have a homogeneous flow across the canopy in the entire room/greenhouse as you would have in a wind-tunnel. Higher airspeeds might be desirable if CO2 enrichment is being done, although care must be taken to ensure that the relative humidity is high enough to account for the additional wind chill that the plants are going to be subjected to. Also, aim to have these airflow conditions through the entire life of the plant, as early adaptations to the airflow regime will tend to limit what can be achieved by trying to increase airflow at a later time.

Photosynthetic rate as a function of windspeed, LAI stands for (Leaf Area Index). Taken from this article.

When possible, make sure you compare the LAI values of the different plants you have available. Low LAI values are going to be more suited to high density crops as their efficiency per leaf area unit will be significantly higher and it will be easier to maintain high airflow speeds within the canopy, while crops with high LAI values will make it more difficult for air to move through the canopy plus their photosynthetic efficiency per leaf area unit will be substantially lower.




Advanced phosphorous fertilizers: Are polyphosphates worth it?

If you look into mineral phosphate fertilizers, most of them are of the orthophosphate variety, where phosphorous is present in the form of PO4-3 anions with varying degrees of hydrogen additions depending on the charge balance of the salts. However, there are several different varieties of phosphorous that can be used to fertilize crops. Since the 1970s, polyphosphates have been researched and sold by several different fertilizer companies as a “better way” to fertilize crops. In this post I am going to talk about what polyphosphates are, what the differences with regular orthophosphate fertilizers are, and whether it is worth it or not to replace your current phosphorous fertilization for a regime including or consisting exclusively of these polyphosphates.

Image result for ammonium polyphosphate
Chemical structure of ammonium polyphosphate

Traditional fertilizers like Mono Potassium Phosphate, MKP (KH2PO4) will contain phosphorous in a chemical state that is readily available to plants. The HPO4-2 and H2PO4 that are generated from this salt in water at a pH between 6-7 are favorably and effectively taken up by plants under normal conditions. However, upon significant presence of calcium/magnesium minerals or high pH levels, it is common for a lot of the phosphorous to become trapped in the form of insoluble phosphates. These calcium and magnesium phosphates will be unavailable to plants and the soil will quickly become P limited, making P fertilization difficult due to the eagerness with which the soil chemistry can sequester the added phosphate.

Polyphosphates like ammonium polyphosphate (APP), where the phosphorous is not present as single phosphate anions but as a complex P polymer, can overcome some of the above problems as their tendency to form insoluble salts with cations is suppressed and their solubility is significantly higher. Their use in calcium-rich soils has been proven experimentally multiple times, the following reference provides an example of this (1). However, is there any benefit provided beyond their superiority in this type of high pH and high Ca conditions?

The chemical properties of APP have been extensively studied and we know that many of their benefits in comparison with orthophosphate (OP) salts are eliminated by a simple move towards acidic pH (2,3). Field experiences have shown that when the soil conditions are not this bad, the differences between APP and OP are expected to be low (4,5). Under normal pH and ion-concentration conditions, APP seems to provide very similar results to normal sources of phosphate, as it will tend to hydrolyze and form these phosphates with time anyway. This effect can be especially dramatic in more acidic media, where the decomposition of these phosphates can be quite rapid (6).

Image result for polyphosphate orthophosphate fertilizer study
If soil conditions are not unfavorable, poly and ortho phosphates will give the same result. Taken from this study.

To sum things up, under normal conditions, polyphosphate is no better than your normal sources of phosphorous. If you are running a hydroponic setup within a normal pH range and nutrient concentrations, polyphosphates are just a more expensive way to add phosphorous to your system, they will likely provide no added benefit in terms of yields or crop health compared to using regular phosphate fertilizers. However, if you are growing your crops in a Ca-rich soil that is particularly high pH, where P sequestration due to precipitation is a substantial issue, then polyphosphates offer an alternative method of fertilization that is likely to increase yields against normal orthophosphate fertilizers.




Keeping plants short: Natural gibberellin inhibitors

In this series of posts, we have discussed the different techniques and synthetic chemical substances that can be used to keep plants short. We discussed why keeping plants short is important, how this can be done with synthetic gibberellin inhibitors and how this can also be achieved using day/night temperature differentials. However, there are also a lot of natural substances that can be used to inhibit gibberellins, which can be used to help us achieve this same objective. In this post, we will be talking about the research around natural gibberellin inhibitors, the plant extracts that have shown this activity and what we have discovered these plant extracts contain.

Image result for carob plant
Dried seeds and fruits of the carob plant

Research around plant extracts that could inhibit gibberellins started in the late 1960s. Many different plant extracts were tested for inhibitory activity. The tests were simple, a control plant was not sprayed, a second gibberellin control plant was sprayed with gibberellins and a third plant was sprayed with a mixture of gibberellins and the tested plant extract. Whenever inhibitory activity was present, the third plant would show very similar characteristics to the control while the gibberellin sprayed plant would usually stretch significantly. You usually see graphs like the one showed below, where the plant sprayed with the pure gibberellins is the control while the extract contains both the gibberellins and the plant extract. When an extract inhibits the gibberellins the plant grows less under the same gibberellin concentration although as the gibberellin concentration is increased the inhibitory effect of the extract is surpassed and the plants reach similar points.

When doing this research, one of the plants that showed the most promise was the carob plant. Cold-pressed extracts of green carob fruits were studied quite extensively and showed this effect repeatedly (1, 2, 3). Different fractions extracted showed the effect and researchers sought to find the specific substances responsible for the inhibition. Eventually, researchers found that the culprit was abscisic acid (4), also known as ABA. Other plant extracts that had gibberellin inhibitory effects, such as lima beans, also proved to contain significant amounts of ABA (5). So why are we not using ABA as a safe and environmentally friendly gibberellin inhibitor?

Sample graph showing the gibberelin inhibitory effect of a natural extract obtained from carob (taken from here)

It boils down to the chemistry of ABA, which is quite complicated. First of all, ABA contains a chiral center (1′ in the image below), making it the first chiral plant hormone to be discovered. This means that its mirror images are not equivalent – like your right hand is not equivalent to your left hand – which means that these two chemical forms will behave differently in biological systems. This complicates the synthesis of the molecule substantially. Furthermore, ABA contains several double bonds, which, depending on their configuration, can make the molecule completely inactive. Unfortunately, ABA goes through a double bond rearrangement under UV light that causes the molecule to deactivate, making it unstable for everyday use. So while ABA was great on paper, in practice it was never used widely. Several chemical analogs of ABA were developed and a lot of chemistry surrounding ABA and the proteins it binds to have been explored (you can read more in this book).

Phenolic compounds were also of great interest in the 1970s since many of the plant extracts that showed inhibitory activity also contained many of these molecules. These belong to a family of compounds called “tannins” and were then explored in pure form as potential gibberellin inhibitors, with many of them showing substantial activity (6, 7, 8). This showed that extracts coming from fruits like carob had an inhibitory activity that was independent of the activity they got from ABA, although the phenolic compounds were significantly less active compared to the pure plant hormone.

Image result for ABA molecule
Labeled diagram of the active form of ABA

In the late 1970s, the research into these natural gibberellin inhibitors stopped as the first successful synthetic gibberellin synthesis inhibitors started to surface. These were much more effective since they did not deal with the gibberellin once produced but mostly attacked the paths that were used to form the chemical within the plants. Substances such as Chloromequat and Paclobutrazol made most of this research into naturally source inhibitors irrelevant, as these were cheap to produce in mass quantities and much more effective.

With the return towards safer and more natural alternatives and advances in chemical synthesis, the direct use of ABA or phenolic substances in order to inhibit gibberellins to prevent shoot elongation starts to become attractive. If you’re interested in this path, looking at past research from the 1970s to come up with test formulations for foliar spray or root drench products would be a good initial approach. If you want to avoid the use of pure substances and all chemical synthesis, using direct extracts from plants like lima beans and carob is also a potential approach, although care needs to be taken to ensure the conditions of the extraction processes and extract storage do not destroy their active properties.




Five common mistakes people make when formulating hydroponic nutrients

It is not very difficult to create a basic DIY hydroponic formulation; the raw salts are available at a very low cost, and the target concentrations for the different nutrients can be found online. My nutrient calculator – HydroBuddy – contains large amounts of pre-made formulations in its database that you can use as a base for your first custom hydroponic endeavors. However, there are some common mistakes that are made when formulating hydroponic nutrients that can seriously hurt your chances of success when creating a hydroponic recipe of your own. In this post I will be going through the 5 mistakes I see most often and tell you why these can seriously hurt your chances of success.

Failing to account for the water that will be used. A very common mistake when formulating nutrients is to ignore the composition of the water that you will be using and how your hydroponic formulation needs to account for that. If your water contains a lot of calcium or magnesium then you will need to adjust your formulation to use less of these nutrients. It is also important not to trust an analysis report from your water company but to do a water analysis yourself, since water analysis reports from your water company might not be up to date or might not cover the exact water source your water is coming from. It is also important to do several analyses per year in order to account for variations in the water composition due to temperature (which can be big). Other substances, such as carbonates and silicates also need to be taken into account in your formulation as these will affect the pH and chemical behavior of your hydroponic solution.

Failing to account for substances needed to adjust the pH of the hydroponic solution. When a hydroponic solution is prepared, the pH of the solution will often need to be adjusted to a pH that is within an acceptable range in hydroponics (often 5.8-6.2). This is commonly achieved by adding acid since when tap/well water is used, a substantial amount of carbonates and/or silicates will need to be neutralized. Depending on the salt choices made for the recipe, adjustments could still be needed even if RO water is used. Since these adjustments most commonly use phosphoric acid, not accounting for them can often cause solutions to become very P rich with time, causing problems with the absorption of other nutrients, especially Zn and Cu. A nutrient formulation should account for the pH corrections that will be required and properly adjust the concentration of nutrients so that they will reach the proper targets considering these additions.

Iron is chelated but manganese is not. It is quite common in hydroponics for people to formulate nutrients where Fe is chelated with EDTA and/or DTPA but manganese sources are not chelated at all, often added from sulfates. Since manganese has a high affinity for these chelating agents as well, it will take some of these chelating agents from the Fe and then cause Fe phosphates to precipitate in concentrated solutions. To avoid this problem, many nutrient solutions in A/B configurations that do not chelate their Mn will have the Fe in the A solution and then the other micronutrients in the B solution. This can be problematic as it implies the Fe/other micro ratios will change if different stages with different A/B proportions are used through the crop cycle. In order to avoid this issue, always make sure all the micronutrients are chelated.

Not properly considering the ammonium/nitrate ratio. Nitrogen coming from nitrate and nitrogen coming from ammonium are completely different chemically and absorbed very differently by plants. While plants can live with solutions with concentrations of nitrogen coming from nitrate as high as 200-250ppm, they will face substantial toxicity issues with solutions that contain ammonium at only a fraction of this concentration. It is therefore quite important to ensure that you’re adding the proper sources of nitrogen and that the ratio of ammonium to nitrate is in the ideal range for the plants that you’re growing. When in doubt, plants can survive quite well with only nitrogen from nitrate, so you can completely eliminate any additional sources of ammonium. Note that urea, provides nitrogen that is converted to nitrogen from ammonium, so avoid using urea as a fertilizer in hydroponic.

Not considering the media composition and contributions. When growing in hydroponic systems, the media can play a significant role in providing nutrients to the hydroponic crop and different media types will provide nutrients very differently. A saturated media extract (SME) analysis will give you an idea of what the media can contribute and you can therefore adjust your nutrient solution to account for some of the things that the media will be putting into the solution. There are sadly no broad rules of thumb for this as the contributions from the media will depend on how the media was pretreated and how/if it was amended. It will often be the case that untreated coco will require formulations with significantly lower K, while buffered/treated coco might not require this. Some peat moss providers also heavily amend their media with dolomite/limestone, which substantially changes Ca/Mg requirements, as the root system




Using VH400 sensors to build an automated irrigation setup

I have written several posts in the past about the measurement of water content in media, I have covered some very low cost and easy to use sensors that can also be plugged into Arduinos using i2c as well as some of the more accurate sensors you can get for this in hydroponics. However, there are several companies that offer more plug-and-play solutions for the monitoring of moisture in media and the setup of automated irrigation schemes using these measurements. The company Vegetronix offers moisture sensors that are insensitive to salt in media that can be plugged straight into boards that contain relays that can be used to control irrigation pumps. In this post, we will talk about these sensors, how they operate and how you could use them to automate irrigation within your growing room or greenhouse without much coding or setup efforts required. This post is not sponsored by Vegetronix and I have no association with them.

Soil Moisture Sensor
The VH400 moisture sensor

The main offering of Vegetronix in terms of moisture monitoring is their VH400 sensor, this sensor has the advantage of being completely waterproof and rugged in construction. It can be placed deep inside media – right next to the root ball – which is a huge advantage in hydroponic setups that use cocoa or peat moss and use large amounts of media per plant. The small size of the sensor also means that this will be more practical for something like rockwool compared with a sensor like the chirp, which has exposed circuity and cannot be fully submerged. In addition, the VH400 is also suitable for outdoor use. Another thing I like about these sensors is that they are analogue and can therefore be interfaced quite simply with Arduinos or other such control mechanisms, making them great for DYI. This would make them a great candidate to interface with a cricket board, which I showed in a recent post.

The technology used in these sensors is however kept secret. Given that the sensor has no exposed ceramic or metal leads, it would be fair to assume that it is capacitive in nature and probably uses a technology similar to the Chirp sensor, although it is difficult to know precisely how it carries the measurements without doing some heavy reverse-engineering of the sensors. One of its key features though is that it is unaffected by salinity, which is a key requirement for accurate measurements in hydroponics, and – given the lack of exposed metal leads – we are sure this is not a resistive sensor. Vegetronix does not seem to hold any patents on the sensor – please correct me if I’m wrong – so it is fair to assume that the technology is probably well within the well-known techniques in the field.

It is worth noting however that – although advertised as “unaffected by salinity” – it will require routine maintenance, washing with distilled water to reduce salt accumulation and recalibration to ensure it is giving accurate moisture content measurements. As with all moisture sensors, adequate calibration and monitoring of sensors is fundamental to long term success with them. If these sensors are not maintained they will stop giving proper readings with time, especially if they are buried around the root zone of plants in hydroponic setups.

Another important point is that these are low cost sensors and have significant fabrication differences between them, proper and individual calibration of all sensors is required for proper quantitative use.

Latching Relay Board for Moisture Sensors
Vegetronix battery powered relay sensor

With the sensors in mind, we can now discuss the relay boards that make this choice quite attractive. The board shown above, which you can find here, is a battery-powered sensor that links to a single VH400 sensor to trigger a pump at a given moisture sensor threshold. All it takes to use this sensor is to perform a calibration procedure using the VH400 sensor and use the screw on the board to set the point where you want the relay to trigger. The board is 60 USD and the VH400 is 40 USD – at the shortest cable length – so with these two sensors you can set up a quite decent irrigation setup that is fully automated and battery-powered, with minimal wiring required.

However, if you want a more extensive setup, you can get their relay hub, which can connect to popular cloud data services in order to send your data to the cloud while also being battery-powered and allowing for triggering of an irrigation system using multiple sensor readings or input from the cloud. Although this relay box is more expensive, at near 150 USD when you consider the battery accessories, it does provide you with a lot of additional options if you want access to remote monitoring of your moisture sensors. Since it can relay the data to third-party sites like thingspeak, it would be relatively easy for an experienced programmer to hook all that data into a central database to put it together with data from other sensors.

So although the Vegetronix sensors are not my preferred solution if a fully DIY setup is possible – if enough time, experienced personnel, and financial resources are available – I do believe that they make a very good value offer for those who want a decently accurate setup to monitor soil moisture content without the hassle of having to deal with the complications of a fully DIY setup. Their boards offer both super simple, low-cost solutions and more elaborate solutions for those who give more importance to data logging and monitoring. If you aren’t controlling your irrigation with moisture sensors, a quick 100 USD setup of VH400+battery powered relay station is a huge step in the right direction.




Practical aspects of carbon dioxide enrichment in hydroponics

Carbon is one of the most important nutrients a plant consumes as it the largest component of a plant’s dry weight. Plants get this carbon mostly from the atmosphere – in the form of carbon dioxide – and transform it through the process of photosynthesis to create carbohydrates and other carbon-containing molecules. However, carbon dioxide concentrations in the atmosphere are relatively low (350-450 ppm) so plants that are given ample light and root nutrition – such as those in hydroponic setups – will sometimes become limited by the lack of enough carbon dioxide in the atmosphere. Carbon dioxide enrichment seeks to increase this concentration in order to remove this limitation. In today’s post, we’re going to talk about some of the practical aspects of CO2 enrichment in hydroponics setups, such as which concentrations to use, how to do the enrichment, and when to do it.

To dive into the scientific literature about carbon dioxide, I recommend this review from 2018, which not only summarizes a lot of the relevant literature, but contains a wide array of literature resources that can be useful for anybody who wants an in-depth look at the scientific research surrounding CO2 enrichment. A lot of the information contained in this post was taken from this paper or its sources. I will cite specific sources when this is not the case.

Taken from the Oklahoma State University website on carbon dioxide supplementation which contains some great resources on the matter.

First of all, it is important to realize that carbon dioxide enrichment does not make sense under all circumstances. Plants will tend to be limited by other factors before they are limited by carbon dioxide. The first step before CO2 enrichment is considered, is to make sure that the plants are receiving enough light (>400 μmol/m2/s for flowering plants) and that their tissue analyses show that they are not being limited by a deficiency of any particular mineral nutrient. Plants that are either under lower light, drought stress, or nutritional deficiencies will tend to benefit significantly less from CO2 enrichment than plants that are actually limited only by the CO2 concentration in the greenhouse. Under some of these circumstances, CO2 injections could lead to excessive amounts of CO2 that might lead to actually counter-productive results. Temperature can also be a key factor in determining the success of CO2 enrichment, with temperatures in the upper range of ideal temperatures for a crop often leading to better results as the optimal temperature increases as a function of CO2 enrichment (see here).

The next thing to consider is the source of carbon dioxide. The best source to use are CO2 canisters, which provide pure, on-demand CO2 that can be easily controlled both in terms of its purity and its release into the greenhouse. Lower cost sources are usually preferable though, especially fossil fuel burners that will release CO2 on demand. The issue with these burners is that they will release other gases into the atmosphere, like SO2, CO, and NOx, which might be harmful to plants if the output from the burner is not filtered before use. These can be minimized if natural gas burners are used, as these generate the lowest amount of these side-products. Another problem with “burners” is that they will heat the environment, if this does not coincide with the greenhouse’s heating needs it can lead to increases in temperature or excessive costs in climate control measures. For this reason, the timing of these “burner” cycles is critical to ensure they do not “fight” with climate control systems.

Image result for CO2 ppm plant yield
Illustration of gas exchange rate for different temperatures for C3 plants at 330 ppm (atmospheric) and 1000 ppm (around the max that improves the PS Rate). Taken from here.

The sensors used to detect the CO2 and their placement will also be very important. There are mainly optical and electrochemical sensors available for CO2 detection. Both of these sensors need to be periodically checked against CO2 free gases and atmospheric CO2 to check their calibration. Optical sensors often require cleaning in order to remain reliable. Because of these potential reliability issues, it is often ideal to have multiple CO2 sensors used for control and to check the values of the sensors against each other to ensure no sensors have stopped working correctly. The CO2 distribution will usually be highest close to the ground and lower at leaf canopy, reason why sensors need to be placed around canopy height, to ensure the actual canopy concentration reaches the desirable level since this is where most CO2 will be used.

In terms of the concentration that should be held to maximize yields, research has shown that the most benefits – when these are possible – are obtained when the concentration of carbon dioxide is around 1000 ppm. Carbon dioxide is not incorporated into tissue at night and is also expected to negatively affect respiration rates, so common practice dictates that CO2 should be reduced at night to atmospheric levels to counter this problem. A 2020 study on Mulberry attempted to establish the difference between daytime and nighttime supplementation of CO2 and found out that all of the yield increase benefits of the supplementation were obtained when CO2 was supplemented only during the daytime.

This image illustrates the dependence of photosynthesis on light at different levels of CO2 enrichment. was taken from here

Regarding nutrition, carbon dioxide triggers increased demand for certain nutrients. For example, nitrogen demand increases substantially when CO2 supplementation is used (see here). For this reason, hydroponic crops that are CO2 supplemented will usually need to be fed higher amounts of nitrogen in order to avoid losing the benefits of the CO2 supplementation because of the inorganic nitrogen becoming a limiting factor. The carbon dioxide will increase nitrogen demand but not nitrogen absorption if the concentration is left the same, so we need to compensate for this by increasing the amount of nitrogen within the nutrient solution.

There is clearly a lot of research to be done, as optimal CO2 supplementation involves many variables (including financial, environmental, nutritional, plant species, etc). An initial approach where the atmosphere is enriched to 1000 ppm of CO2 with C3 plants that can take advantage of it, where nutrition, in general, is increased, temperatures are slightly increased as well and CO2 is vented at night is bound to give satisfactory initial results. This is a good starting point for anyone looking to benefit from CO2 enrichment.




The cricket IoT board: A great way to create simple low-power remote sensing stations for hydroponics

When you monitor variables in a hydroponic plant where more than a few plants exist, it becomes important to be able to deploy a wide array of sensors quickly and to be able to set them up without having to lay down a couple of miles of wire in your growing rooms or greenhouses. For this reason, I have been looking for practical solutions that could easily connect to Wi-Fi, be low powered, allow for analogue sensor inputs and be more user friendly than things like ESP8266 boards that are often hard to configure and sometimes require extensive modifications to achieve low power consumption. My quest has ended with the finding of the “cricket” an off-the-shelf Wi-Fi enabled chip that fulfills all these requirements (you can find the sensor here). Through this post, I will talk about why I believe it’s such a great solution to deploy sensors in a hydroponic environment. It is also worth mentioning that this post is not sponsored.

The cricket IoT board by ThingsOnEdge

When I seek to create custom monitoring solutions for hydroponic crops, one of the first requirements that comes to mind is the ability to connect through wifi effectively and be able to deliver the measurements to computers without needing wires. The cricket does this without any modifications, when you power it on it creates its own wifi hotspot that you can connect to, where you use a web interface to configure the device to connect to the normal network.

Besides connecting to the Wi-Fi, the next problem I often face is having the ability to have a proper protocol to communicate between devices. The MQTT standard has been my preferred solution – due to how easy it is to receive and relay information – so I always seek boards that are able to easily hook up to an MQTT server once they are in a Wi-Fi network. The cricket achieves this effortlessly as well, as MQTT is part of its basic configuration, which allows you to connect it with your MQTT server and relay its data right off the bat.

One of the simplest but most powerful applications for hydroponics is to hook up a capacitive moisture sensor to a cricket board and have this relay the data to an MQTT server. You can set this up to even send the data to an MQTT server powered by ThingsOnEdge, so that you don’t have to send the data to your own server. This setup can be battery powered with 2 AA batteries, it can then give you readings for several months, depending on how often you want the sensor to broadcast its readings. You can read more about how to carry out this project here.

A complete assembled device
cricket hooked to a capacitive sensor, image taken from here.

One of the disadvantages of the cricket – the main reason why it won’t fully replace other boards for me – is that it only has one analog sensor and one digital sensor input. This means that you’re limited to only two sensors per cricket and you also have an inability to use more advanced input protocols, such as the i2c protocol that is used by a wide variety of sensors. If you lack i2c it means you’re going to miss the opportunity to use a lot of advanced sensors, many of which I consider basic in a hydroponic setup, such as the BME280 sensors (see here why).

Although it is not a perfect sensor, the cricket does achieve two things that make it a great intro for people who want to get into IoT in hydroponics or those who want to setup a couple of low-power sensor stations with absolutely no hassle. The first is that it achieves simple configuration of both Wi-fi and MQTT and the second is that it simplifies the power consumption aspects, making it very easy to configure things such as sleep times, sensor reading intervals, and how often the sensor tries to relay those readings to the MQTT server. All-in-all, the cricket is a great starting point for those who want to get going with custom IoT in hydroponics with the least possible hassle.




Can you grow large flowering plants like tomatoes using the Kratky method? (passive hydroponics)

I have previously shared some tips on how to grow successfully with the Kratky method in my blog before (1). This growing system, which was developed in the early 2000s, uses completely passive setups to grow plants, completely eliminating the need for any recirculation and – for smaller plants – even eliminating the need to replenish nutrient solution. However, the traditional set-and-forget methods used to grow small plants, runs into heavy limitations when confronted with the growing of larger flowering plants, like tomatoes. In this post we’re going to look into these issues, some of the scientific literature on the matter and some setups that can actually be used for the growing of large flowering plants under commercial growing conditions.

In the Kratky method you place a seedling in a cup with a small amount of media on top of a large container filled with solution up to the point where the solution slightly touched the cup. The plant feeds from the nutrient solution, lowering its level and opening up an “air gap” that the plant’s roots can use to get the oxygen they require. Small plants – most prominently lettuce – can be grown like this, because the crop cycle is short enough so that the amount of water in a reasonably size container can last for the entirety of the plant’s life. The effect of the plants on the solution is also milder – due to their smaller size – so nutrient imbalances created in the solution by plant absorption and plant exudates are limited.

Taken from the 2005 Kratky paper on growing tomatoes passively.

With bigger plants, it’s an entirely different deal. A healthy, heavy producing tomato plant will go through 20-30 gallons of water in its entire cycle, so a simple container-based Kratky method would need to have a huge container in order to grow a plant equivalent to a plant grown in traditional hydroponic methods (think a 55 gallon drum). Trying to do this in smaller containers leads to poor results due to the changes that the tomato plant causes in the nutrient solution. Extreme changes in pH – often reaching 9-10 – and great imbalances, will hinder nutrient absorption and lead to quite extreme nutrient deficiencies and problems within the plants. In the best cases the plants will be stunted, limited in production and will yield lower quality produce while in the worst cases they will die and fail to produce any useful harvest.

It is therefore impractical to have a fully passive hydroponic system to grow tomatoes or other large flowering plants – especially if we want to rival the production potential of other hydroponics methods – but this doesn’t mean we cannot try to get close. Kratky published a paper in 2005 that tries to create such a system (see image above). In these systems tomatoes are not grown in containers that are perpetually left alone but they are suspended above beds where the nutrient solution rests. Nutrients are only added once – at the start of the crop – and the solution level is maintained at a desired point using fresh water. Since the volume of solution in these beds is much larger than in single containers, the tomatoes generally do much better. The tomatoes also have access to the solution that is used by many other plants, so imbalances also tend to be smaller than those of single container setups. The beds made of lumber and plastic lining are also cheap to build and provide a potentially viable way to do this commercially, although the non-recirculated solution does provide a nasty breeding ground for mosquitoes, a huge problem for this type of setup at a larger scale.

Image taken from this article.

Can you get commercially viable yields without having a 55 gallon drum per tomato plant? If you’re careful! At around the same time Kratky was experimenting with his lumber beds, a group in Pakistan was trying to grow tomatoes in 13L containers using different hydroponic solutions (published here). They initially filled the container with nutrient solution but it is unclear from the paper how the solution was replenished. Since the published volumes of solution used were much higher than the container volumes, it can be assumed that water was added, but it is unclear whether this water contained nutrients or not. Since they say that the pH/EC were observed/adjusted it is reasonable to think that they maintained a certain level within the containers and measured the pH/EC trying to correct these variables with water, nutrients or pH up/down additions with time. They obtained good results with the Cooper solution but the fact that constant monitoring and adjusting was necessary shows that this technique is likely not viable for large scale commercial production as individual monitoring of plants would be a nightmare.

There is a significant lack of research after 2005 in this area, most probably because it has been established that you need to compromise pretty heavily with large flowering plants if you want to grow them without nutrient recirculation or loss of nutrient solution. Systems absolutely need to have very large solution volumes – so large growing beds are probably one of the only viable commercial choices – just because of the water/mineral demand coming from the plants. Additionally the amount of minerals drawn from the water will be large and the imbalances created by their uptake will be large as well. Furthermore, problems with large volumes of stagnant solutions are not small, accumulation of larval pests will be quite substantial and might require the addition of chemical treatments or a lot of additional mesh/netting to alleviate the problem.

If the system is not very large in volume then it becomes inescapable to deal with the toxicity of the solution, which means to adjust it accordingly. At the very least, measuring pH and EC and adjusting them accordingly is the minimum threshold to achieve results that would be acceptable at a commercial level. It is however not viable to do this at a larger scale, as the plants are heavy and having to open the containers, measure and move the plants is likely to cause damage and be very expensive in terms of labor costs.

If you don’t care about volume of production or quality that much and you just want to grow some tomato plants, then doing the Kratky method for tomatoes in 5 gallon containers with a properly formulated hydroponic solution for this purpose might yield some harvest, but the results will be very inferior to those that you could get with either a recirculating system or even a simple drain-to-waste system where the plant is just watered with nutrients with proper monitoring of the EC/pH of the run-off.